
Abstract: Online learning methods for Online Convex Optimization (OCO) are normally designed 
to be robust to adversarial data. This means they come with a guaranteed upper bound on their 
regret that holds uniformly over all data sequences. But the set of all data sequences also includes 
data sequences that are completely irrelevant in practice, and we see that the matching lower 
bounds are usually witnessed by such irrelevant data sequences. Specifically, the lower bounds 
are usually proven for completely random data, from which there is nothing interesting to learn.
This has motivated the development of a series of adaptive methods, which come with data- 
dependent regret guarantees. These data-dependent guarantees are never worse than the 
previous uniform guarantees, but if the data happen to be relatively "easy", they can be orders of 
magnitude better. Another important type of adaptivity is to remove the need for a user to set 
hyperparameters like an upper bound on the norm of the optimal parameters or the Lipschitz 
constant of the losses. In this course I will introduce the mathematical theory of OCO from first 
principles and build up to state-of-the-art results in both types of adaptivity.
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