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Abstract
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increments to superadditive processes. We show that superaddi-
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1 Introduction
Let (Ω,B, µ, T ) a measure-preserving dynamical system, i.e (Ω,B, µ) is a
probability space and for all A ∈ B, µ(T−1(A)) = µ(A). A B-measurable
sequence {Sn}n≥1 with value in (−∞,∞] is said to be superadditive if

for all n, s ∈ N∗ Sn + Ss ◦ T n ≤ Sn+s a.s. (1.1)

A subadditive sequence is defined as the opposite of a superadditive process.
Since their introduction by Hammersley and Welsh (1965), one of the most
significant contributions to the study of subadditive stochastic processes is
the Kingman’s subadditive ergodic theorem (see Kingman (1973)). Kingman
showed that if {Sn}n≥1 is a superadditive process and S−

1 is integrable then
n−1Sn converges a.s. to a function S : Ω → R. Moreover, S− is integrable
and ∫

Sdµ = lim
n→∞

1

n

∫
Sndµ = sup

n

1

n

∫
Sndµ ∈ (−∞,+∞].

This result is a generalization of the well-known ergodic theorem of Birkhoff
for additive processes, such that for all n, s ∈ N∗ Sn+Ss ◦T n = Sn+s a.s.
For these additive processes, even if the integrability condition does not hold,
Kesten (1975) (see also Atkinson (1976)) showed that

lim inf n−1Sn > 0 a.s on the set {Sn → ∞, n→ ∞} . (1.2)

This well-known result has found numerous applications in ergodic theory
and was a precursor in the study of the recurrence of stationary random
walks, see Atkinson (1976), Berbee (1981) and Schmidt (2006)). A similar
result under an integrability condition has been obtained by Bougerol and
Picard (1992, Lemma 3.4) for the product of random matrices, which char-
acterizes the case where the so-called top-Lyapunov coefficient is negative.
As in Bougerol and Picard (1992), this contraction property is often used to
establish necessary and sufficient conditions for the existence of stationary
solutions for Stochastic Recurrence Equations (SRE) in Rn.

In this paper, we extend Kesten’s result to superadditive processes by
showing that a superadditive process that stays positive for a certain period
grows at least linearly to infinity. As a corollary, we deduce the lemma 3.4
of Bougerol and Picard (1992). Our results provide a characterization of the
top-Lyapunov’s exponent sign for a class of discrete-time dynamical systems.
The top-Lyapunov exponent is used to quantify the stability or instability
of a system, and is often associated with stability when it is negative. For
instance, we use our result to provide, under mild conditions, a necessary
and sufficient condition for the existence of stationary solutions of functional
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GARCH models in the space of continuous functions introduced by Aue et al.
(2017) and Hörmann et al. (2013).

The rest of the paper is organized as follows. Section 2 is reserved for the
main results. The study of the existence of stationary solution of functional
GARCH models is the object of Section 3. Section 4 discusses perspectives
for future work.

2 The growth rate of superadditive processes
Let us start with some remainders and conventions. A set I ∈ B is said to be
invariant if µ (I∆T−1(I)) = 0. The invariant σ-algebra Iµ is the collection
of all such invariant sets I. It is easy to verify that for all A ∈ B, µ(A) = 1
implies that A ∈ Iµ.

We set S0 = 0 throughout the paper. The convention that inf ∅ = ∞
and sup∅ = −∞ is used, a sum over an empty set will be equal to zero, and
T 0 = idΩ. Pointwise convergence will be denoted by pw−→. For all measurable
functions Y from Ω to a measurable space (F,F), and all A ∈ F and (B,C) ∈
B2, we say that:

Y ∈ A a.s on B if µ({Y ∈ A} ∩B) = µ(B),

C ⊂ B a.s if 1C ≤ 1B a.s.

Remark that results obtained for superadditive processes can be easily
adapted for subadditive processes. Let us state our main result.

Theorem 2.1. Let {Sn}n≥1 be a superadditive sequence and let τ 0 =
supn∈N{n : Sn ≤ 0}. We have

lim inf n−1Sn > 0 a.s on {τ 0 <∞} .

Noting that {τ 0 <∞} = lim inf{Sn > 0}, Theorem 2.1 includes Kesten’s
result for additive sequences. Unlike Kesten’s assumption that Sn goes to
infinity, we only require that the process is positive for sufficiently large values
of n.

We need two technical lemmas before proving the theorem.

Lemma 2.1. Let {Sn}n≥1 be a real valued superadditive sequence and let
τ 0 = supn∈N{n : Sn ≤ 0}. We have

lim inf Sn > 0 a.s on {τ 0 <∞} . (2.1)
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Proof. Let A = {lim inf Sn = 0, τ 0 <∞}, it is clear that (2.1) is equivalent
to µ(A) = 0. We argue by contradiction: suppose that µ(A) > 0, let

V = A ∩ {Sn + Ss ◦ T n ≤ Sn+s for all n, s ∈ N∗}.

By countability of N2, we have

µ({Sn + Ss ◦ T n ≤ Sn+s for all n, s ∈ N∗}) = 1,

so we have µ(V ) = µ(A) > 0. By Birkhoff’s ergodic theorem we have

gn := n−1

n∑
k=1

1V ◦ T k −→ g := Eµ(1V |Iµ) a.s as n→ ∞.

Since Eµ(g) = µ(V ), then µ({g > 0}) = µ({lim inf gn > 0}) > 0 and
so {lim inf gn > 0} ̸= ∅. Letting ω ∈ {lim inf gn > 0}, this implies that
{k : T k(ω) ∈ V } is not finite, and so there is a strictly increasing sequence
of integers {nk(ω)}n≥1 such that T nk(ω) ∈ V. Since ω′ := T n1(ω) ∈ V and
V ⊂ {τ 0 <∞} , then τ 0(ω

′) < ∞. Let p(ω) such that s := np − n1 ≥
τ 0(ω

′) + 1. Since s > τ 0(ω
′) it follows that

Ss(ω
′) > 0. (2.2)

The fact that T np(ω) ∈ V implies that

lim inf Sn(T
np(ω)) = 0. (2.3)

By the fact that ω′ ∈ V , for all n ≥ s,

Ss(ω
′) + Sn−s (T

np(ω)) = Ss(ω
′) + Sn−s ◦ T s(ω′) ≤ Sn(ω

′), (2.4)

It follows by (2.2)-(2.4), that lim inf Sn(ω
′) ≥ Ss(ω

′) > 0, which contradicts
the fact that ω′ ∈ V and thus µ(A) = 0.

The second lemma gives a property on series with terms in {0, 1}. Let
p > 0 and let u = {un}n≥0 a sequence of elements of {0, 1}N. For all n > p,
define {vn

k(u)}∞k=0 a sequence of elements of {n, n− 1, · · · , 0, −∞}N by

vn
0 (u) = n and for all k > 0 vn

k(u) = sup{r ∈ N : r ≤ vn
k−1(u)− p, ur = 1}.

Define also qn(u) = sup{k : vn
k(u) > −∞} and s(u) = inf{k : sk ≥ p},

where sk :=
k∑

i=0

ui.

(2.5)
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It is clear that the sequence {vn
k(u)}∞k=0 is decreasing and becomes −∞

eventually. Hence, the largest index k for which vn
k(u) is finite, denoted as

qn(u), is well-defined. Note also that

for all k < qn(u), vn
k(u)− vn

k+1(u) ≥ p. (2.6)

If
∑∞

i=1 ui ≥ p then s(u) is finite and, since {un}n≥0 takes values in
{0, 1}, there exists an integer n such that

∑n
k=0 uk = p, which implies that∑s(u)

k=0 uk = p.

Lemma 2.2. If lim inf n−1sn > 0 then

1. for all n > s(u), vn
qn(u)(u) ≤ s(u),

2. lim inf n−1qn(u) > 0.

Proof. For the first part, we have s(u) + 1 ≥ p and then

s(u)+1−p∑
k=0

uk =

s(u)∑
k=0

uk −
s(u)∑

k=s(u)+1−p+1

uk = p−
s(u)∑

k=s(u)+2−p

uk

≥ p− (p− 1) = 1 > 0.

It follows that there exists r0 ≤ s(u) + 1− p such that ur0 = 1. Therefore, if
vn
qn(u)(u) > s(u), i.e s(u)+1 ≤ vn

qn(u)(u), then r0 ≤ vn
qn(u)(u)− p. It follows

that r0 ∈ {r ∈ N : r ≤ vn
qn(u)(u)−p, ur = 1} and thus vn

qn(u)+1 ̸= −∞. This
contradicts the definition of qn(u). We thus have shown 1. To show 2, noting
that vn

0 (u),v
n
1 (u), · · · ,vn

qn(u)(u) is a strictly decreasing sequence of integers
with vn

0 (u) = n, one has

sn =

vn
0 (u)∑

k=vn
1 (u)+1

uk +

vn
1 (u)∑

k=vn
2 (u)+1

uk + · · ·+
vn
qn(u)

(u)∑
k=0

uk. (2.7)

Since, by definition, vn
l+1(u) is the largest index l below vn

l (u)− p such that
ul = 1 then uk = 0 for all vn

l+1(u) < k ≤ vn
l (u)− p. We thus have

vn
l (u)∑

k=vn
l+1(u)+1

uk =

vn
l (u)∑

k=vn
l (u)−p+1

uk ≤ p, for all l < qn(u). (2.8)

By the first part of the lemma we have

vn
qn(u)

(u)∑
k=0

uk ≤
s(u)∑
k=0

uk = p, . (2.9)
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It follows by (2.7), (2.8) and (2.9) that sn ≤ p(qn(u) + 1). Therefore,

lim inf n−1qn(u) ≥ lim inf n−1(p−1sn − 1) = p−1 lim inf n−1sn > 0,

which concludes the proof.

We are now ready to give the proof of the theorem.

Proof of Theorem 2.1. The proof does not follow that of Kesten and only
uses the ergodic theorem as an external result. Since the real valued sequence
S̃ := {min(Sn, n)}n≥1 is superadditive and lim inf{Sn > 0} = lim inf{S̃n >
0}, and S ≥ S̃ then one can assume without loss of generality that S is a
real valued process. By (2.1), it suffices to prove that

lim inf n−1Sn > 0 a.s on {lim inf Sn > 0} . (2.10)

Let B = {lim inf n−1Sn = 0, lim inf Sn > 0}. Since on
{lim inf Sn > 0} , one has lim inf n−1Sn = 0 or lim inf n−1Sn > 0 a.s.
then to show (2.10), it is equivalent to prove that µ(B) = 0. We argue
by contradiction: assume that µ(B) > 0. Let f = lim inf n−1Sn. Note that
for all ω ∈ Ω,

f(ω) = lim inf
1

n
Sn+1(ω) ≥ lim inf

n→∞

Sn ◦ T (ω) + S1(ω)

n
= f (T (ω)) , a.s

hence for all a ∈ R, {ω : f ◦ T (ω) > a} ⊂ {ω : f(ω) > a} a.s. i.e.

T−1 ({f > a}) ⊂ {f > a} a.s.

Because µ (T−1({f > a})) = µ({f > a}), we have
µ ({f > a}∆T−1({f > a})) = 0, and therefore

for all a ∈ R, {f > a} ∈ Iµ. (2.11)

Let N = {f ≤ 0} . Since B ⊂ N, then µ(N) > 0. Let ν the probability
measure in (Ω, B) given by the conditional probability given N . By Lemma
A.1, (Ω,B, ν, T ) is a measure-preserving dynamical system and since ν is
absolutely continuous with respect to µ then {Sn}n≥1 is a superadditive
sequence on (Ω,B, ν, T ). Noting that {f > 0}∩N = {f > 0}∩{f ≤ 0} = ∅,
we have

ν(f > 0) = µ(N)−1µ({f > 0} ∩N) = 0. (2.12)

Let us now show that under the condition µ(B) > 0, one also has ν(f > 0) >
0, which contradicts (2.12). Since {lim inf Sn > 0} ∩N = B, one has

ν(lim inf Sn > 0) = µ(N)−1µ(B) > 0
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and thus

there exists η > 0 such that ν(lim inf Sn > η) > 0. (2.13)

Since

ν(lim inf Sn > η) = ν(∪n{ inf
k≥n

Sk > η}) = lim
n→∞

ν(inf
k≥n

Sk > η),

it follows by (2.13) that

there exists p > 0 such that ν(inf
k≥p

Sk > η) > 0. (2.14)

For this p, let
W = {inf

k≥p
Sk > η}.

By Birkhoff’s ergodic theorem we have

hn := n−1

n∑
k=1

1W ◦ T k −→ h := Eν(1W |Iν) ν − a.s as n→ ∞.

Since Eν(h) = ν(W ) > 0, then ν({lim inf hn > 0}) = ν({h > 0}) > 0. Let

U = {lim inf hn > 0} ∩ {Sn + Ss ◦ T n ≤ Sn+s for all n, s ∈ N∗}.

By arguments already given, we have

ν(U) = ν({lim inf hn > 0}) > 0. (2.15)

Let u = {un}n≥0 := {1W ◦ T n}n≥0, on U , i.e. for all ω ∈ U, uω = {1W ◦
T n(ω)}n≥0. Define {vn

k(u)}∞k=0, {qn(u)}n≥0, s(u) and {Sn}n≥1 as in (2.5)
with p defined in (2.14). Note that s(u) <∞ and for all n > s(u), qn(u) ≥
1. Remark also that n−1sn = hn for all n and thus on U

lim inf n−1sn = lim inf hn > 0 (2.16)

Since vn
0 (u) = n, then on U

for all n ≥ s(u), Sn = Svn
qn(u)

(u) +

qn(u)−1∑
k=0

(
Svn

k (u)
− Svn

k+1(u)

)
. (2.17)

By the first point of Lemma 2.2 one has Svn
qn(u)

(u) ≥ infi≤s(u)(Si) and by the
definition of U, for all n ≥ s(u) and k < qn(u),

Svn
k (u)

− Svn
k+1(u)

≥ Svn
k (u)−vn

k+1(u)
◦ T vn

k+1(u) on U.
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It follows by (2.17) that on U,

for all n ≥ s(u), Sn ≥ inf
i≤s(u)

(Si) +

qn(u)−1∑
k=0

Svn
k (u)−vn

k+1(u)
◦ T vn

k+1(u). (2.18)

Since on U for all k < qn(u), uvn
k+1(u)

= 1, i.e. T vn
k+1(u) ∈ W and by

Eq. (2.6) vn
k(u)− vn

k+1(u) ≥ p, then the definition of W implies that

for all k < qn(u), Svn
k (u)−vn

k+1(u)
◦ T vn

k+1(u) > η on U.

Thus, by (2.18), one has on U

for all n ≥ s(u), Sn ≥ inf
i≤s(u)

(Si) + ηqn(u).

It follows by (2.16) and the second point of Lemma 2.2, that

f = lim inf n−1Sn ≥ η lim inf n−1qn(u) > 0 on U.

Thus ν({f > 0}) ≥ ν(U) > 0, where the last inequality is due to (2.15).
This contradicts (2.12) and concludes the proof.

Remark 2.1. Following the result of Theorem 2.1, we can wonder if

lim supn−1Sn < 0 a.s on lim inf{Sn < 0}.

However, this statement is incorrect. A simple counter-example is the super-
additive process that is identically equal to −1. A counter-example of non-a.s.
constant process can be constructed.1.

Theorem 2.1 could be stated in a weaker form if the set where (Sn)n≥1

is not always non-positive and becomes non-negative for sufficiently large
values of n is invariant. This variant result is the following:

Theorem 2.2. Let {Sn}n≥1 be a superadditive sequence, let τ =
supn∈N{n : Sn < 0} and let E be an invariant subset of {supn∈N Sn >
0, τ <∞}. One has

lim inf n−1Sn > 0 a.s on E. (2.19)

1Let {Xn}∞n=1 a positive strictly stationary and ergodic process with a positive finite
moment and let α ∈ (0, 1). Using the inequality (a+b)α ≤ aα+bα for all a, b ≥ 0, we have
{Sn := −(

∑n
k=1 Xk)

α}∞n=0 is superadditive. However, since the ergodic theorem implies
that n−1

∑n
k=1 Xk → EX1 ∈ (0,∞) a.s. as n → ∞ then Sn → −∞ a.s. as n → ∞ and

lim supn−1Sn = lim supn−(1−α)(n−1
∑n

k=1 Xk)
α = 0 a.s.
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Proof of Theorem 2.2. Note that (2.19) is equivalent to µ({lim inf n−1Sn >
0} ∩ E) = µ(E). Letting υ = infn∈N{n : Sn > 0}, one has {υ < ∞} =
{supn∈N Sn > 0} and then E ⊂ {υ <∞, τ <∞}. Let P = {Sn +Ss ◦ T n ≤
Sn+s for all n, s ∈ N∗} and let

E ′ = E ∩ P and C(E ′) =
⋂
n≥0

T−n(E ′).

Since µ(P ) = 1 then P is invariant and µ(E ′) = µ(E). Hence E ′ is also
invariant and it follows by Lemma A.2, that

µ(C(E ′)) = µ(E). (2.20)

Since C(E ′) ⊂ E ⊂ {υ < ∞, τ < ∞}, it follows by Lemma A.2 that for all
ω ∈ C(E ′) one has,

Sυ(ω) > 0, Sn(ω) ≥ 0 for all n > τ and T n(ω) ∈ C(E ′) for all n ≥ 0

and then on C(E ′),

for all n > τ ◦ T υ + υ, Sn(ω) ≥ Sn−υ ◦ T υ + Sυ ≥ Sυ > 0. (2.21)

The second last inequality comes from the fact that Sn−υ ◦ T υ ≥ 0 because
n− υ > τ ◦ T υ and T υ ∈ C(E ′) on C(E ′) ⊂ {τ < ∞}. It follows by (2.21)
that C(E ′) ⊂ lim inf{Sn > 0} ∩ E and thus, by Theorem 2.1, one has

µ(C(E ′)) ≤ µ(lim inf{Sn > 0} ∩ E) = µ({lim inf n−1Sn > 0} ∩ E). (2.22)

Hence, in views of (2.20) and (2.22) we have µ({lim inf n−1Sn > 0} ∩ E) ≥
µ(E). Since {lim inf n−1Sn > 0} ∩ E ⊂ E, it follows that

µ({lim inf n−1Sn > 0} ∩ E) = µ(E).

This concludes the proof.

Remark 2.2. It is clear that the condition supn∈N Sn > 0 in Theorem 2.2
is necessary and cannot be replaced by a weaker condition. Moreover, the
invariance assumption cannot be weakened without adding a supplementary
condition. To illustrate this, we consider a process from Kesten (1975). Let
Ω = RN, T the left shift operator and P[{(−1)n}n] = P[{(−1)n+1}n] = 1/2.
The sequence Sn({xi}n) :=

∑n−1
i=0 xi is an additive process. However, (Sn)n

is almost surely bounded on {supn∈N Sn > 0}∩lim inf{Sn ≥ 0} = {[(−1)n]n}.
It can be observed that {[(−1)n]n} is not invariant.
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Remark 2.3. An interesting consequence of Theorem 2.2 is that

lim inf n−1Sn > 0 a.s if sup
n∈N

Sn > 0 µ-a.s and µ(lim inf{Sn ≥ 0}) = 1,

(2.23)
( i.e if µ({supn∈N Sn > 0} ∩ lim inf{Sn ≥ 0}) = 1). Indeed, since for all
A ∈ B, µ(A) = 1 implies that A ∈ Iµ, then (2.23) follows from Theorem
2.2.

We say that T is ergodic if for all I ∈ Iµ, µ(I) ∈ {0, 1}.

Corollary 2.1. Let {Sn}n≥1 a superadditive sequence. If T is ergodic then
lim inf n−1Sn is almost surely constant in R and

lim inf n−1Sn > 0 a.s if and only if µ(lim inf{Sn > 0}) > 0. (2.24)

Proof. For the first point, using (2.11) and the ergodicity of T , we can
deduce that for all a ∈ R, the function F (a) := µ(lim inf n−1Sn ≤ a) takes
its values on {0, 1}. Since F (∞) = 1, and a 7→ F (a) is right continuous and
non-decreasing on R, we can conclude that there exists an a0 ∈ R such that
for all a < a0, F (a) = 0 and F (a0) = 1. Therefore, we can conclude that
µ(lim inf n−1Sn = a0) = 1, which implies that lim inf n−1Sn = a0 almost
surely.

The necessary condition in (2.24) is trivial. To show the sufficient
condition, using Theorem 2.1, we deduce that µ(lim inf n−1Sn > 0) =
µ(lim inf Sn > 0) > 0. Therefore, in view of Equation (2.11) and the er-
godicity of T , it follows that µ(lim inf n−1Sn > 0) = 1.

In the next theorem, we state the last main result of this section. Let
A ∈ B with µ(A) > 0. Let τ = inf{n ≥ 1 : T n ∈ A}. Define L by L = T τ if
τ is finite, and L = idΩ otherwise. Let ν be the probability measure given by
the conditional probability given A. By the Poincaré recurrence theorem we
know that the set of points ω of A for which T n(ω) /∈ A for all n ≥ 1 has zero
measure. Therefore, τ is almost surely finite under ν and then L = T τ ν-a.s.
We can also define the ν-a.s. finite sequence of integers (τn)n≥1: τn = τ ◦Ln−1.
For all n ≥ 0, let υn =

∑n
k=1 τk. It is easy to see that υn is the index k where

T k ∈ A for the n-th time. Therefore (υn) is ν-a.s. strictly increasing and
grows to infinity. We have the following:

Theorem 2.3. Let {Sn}n≥1 a superadditive sequence with S−
1 integrable, one

has
limn−1Sn > 0 ν-a.s on lim inf

n
{Sυn > 0}.

10



Noting that (υn) = (n : T n ∈ A), Theorem 2.3 states that if S−
1 is

integrable, then limn−1Sn > 0 µ-a.s on the intersection of set A and the set
where the sequence (Sn : T n ∈ A) is positive from a certain period. This
means that under the set A, the positivity condition only involves the values
of (Sn) with indices in (n : T n ∈ A). Note also that, under the integrability
of S−

1 , this result is more general than Theorem 2.1, which is obtained by
taking A = Ω.

In Remark 2.4 below, we show that the integrability condition in Theorem
2.3 is not superfluous.

We immediately deduce the following result that extends a variant of
Kesten’s result, established by Eskin and Mirzakhani (2018, Lemma C.8),
for additive sequences to superadditive processes.

Corollary 2.2. Suppose that T is ergodic and let {Sn}n≥1 a superadditive
sequence with S−

1 integrable. Let A ∈ B with µ(A) > 0. If, almost surely, the
sequence (Sn : T n ∈ A) is positive from a certain period, then

limn−1Sn = limn−1ESn = sup
n
n−1ESn > 0 a.s. (2.25)

Proof. The first two equalities in (2.25) follows from Kingman’s subaddi-
tive ergodic theorem. To prove that limn−1Sn > 0 a.s., observe that if
µ({(Sn : T n ∈ A) is positive from a certain period}) = 1, then by Theorem
2.3, µ(limn−1Sn > 0, A) = µ(A) > 0. This means that µ(limn−1Sn > 0) >
0, which implies the result by already given arguments.

The proof of Theorem 2.3 is based on Theorem 2.1 and the following
additional result.

Lemma 2.3. We claim that: i) (Ω,B, ν, L) is a measure-preserving dynam-
ical system and, ii)

Eντ = µ(∪k≥1{T k ∈ A})/µ(A) <∞. (2.26)

Moreover, iii) (Sυn)n is a superadditive sequence on (Ω,B, ν, L).

Proof. We prove i). Recall that τ is almost surely finite under ν and L =
T τ ν-a.s. Thus, we must show that for all B ∈ B, ν(T τ ∈ B)) = ν(B). We

11



have

ν(T τ ∈ B)) =
∞∑
k=1

ν(τ = k, T k ∈ B)

= µ(A)−1

∞∑
k=1

µ(A, T 1 /∈ A, · · · , T k−1 /∈ A, T k ∈ A, T k ∈ B)

= µ(A)−1

∞∑
k=1

µ(X0 = 1,X1 = 0, · · · ,Xk−1 = 0,Xk = 1,Y k = 1),

where (Xn,Y n) = (1A◦T n, 1B◦T n) for all n ≥ 0. It is clear that (Xn,Y n)n≥0

is a stationary sequence on (Ω, B, µ). Therefore, it is well-known that we
can extend that sequence into the past to obtain a full stationary process
(Xn,Y n)n∈Z, see for instance Elton (1990, Lemma 1). Hence

ν(T τ ∈ B)) = µ(A)−1

∞∑
k=1

µ(X−k = 1,X−k+1 = 0, · · · ,X−1 = 0,X0 = 1,Y 0 = 1)

= µ(A)−1

∞∑
k=1

µ(X0 = 1,Y 0 = 1,∪k≥1{X−k = 1})

= µ(A)−1µ(X0 = 1,Y 0 = 1})
= ν(B).

The second equality is derived from the fact that the sets ({X−k = 1,X−k+1 =
0, · · · ,X−1 = 0})k≥1 are disjoint and their union constitutes ∪k≥1{X−k =
1}. The third equality follows from the Poincaré recurrence theorem, which
implies that {X0 = 1} ⊂ ∪k≥1{X−k = 1}. The conclusion follows.

The proof of ii) (Eq. (2.26)) uses similarly arguments. We have

Eντ =
∞∑
k=1

ν(τ ≥ k) = µ(A)−1

∞∑
k=1

µ(X−k = 1,X−k+1 = 0, · · · ,X−1 = 0)

= µ(A)−1µ(∪k≥1{X−k = 1})
= µ(∪k≥1{T k ∈ A})/µ(A),

because µ(∪k≥1{X−k = 1}) = limn µ(∪n
k=1{X−k = 1}) = limn µ(∪n

k=1{Xk =
1}) = µ(∪k≥1{Xk = 1}) = µ(∪k≥1{T k ∈ A}).

To show iii), first note that,

for all n, s ∈ N∗, Ln = T υn and υn + υs ◦ T υn = υn+s ν-a.s. (2.27)
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Thus, by superadditivity and the fact that ν is absolutely continuous with
respect to µ, for all n, s ∈ N∗,

Sυn + Sυs◦Ln ◦ Ln = Sυn + Sυs◦Tυn ◦ T υn

≤ Sυn+υs◦Tυn

= Sυn+s ν-a.s.

This concludes the proof.

Proof of Theorem 2.3. By superadditivity, for all n, one has ν-almost surely
Sn − Sυk ≥ Sn−υk ◦ T υk where υk ≤ n < υk+1. Thus

Sn = (Sn − Sυk) + Sυk

≥ Sn−υk ◦ T υk + Sυk

≥ min
0≤i<υk+1−υk

Si ◦ T υk + Sυk

≥ min
0≤i<τ◦Lk

Si ◦ Lk + Sυk , by Eq. (2.27).

≥ min
0≤i<τ◦Lk

−S−
i ◦ Lk + Sυk ν-a.s.

Since, by superadditivity Si ≥
∑i−1

j=0 S1 ◦ T j ν-a.s. for all 0 ≤ i < τ ◦ Lk,

we have −S−
i ◦ Lk ≥ (

∑i−1
j=0−S−

1 ◦ T j) ◦ Lk ≥ −(
∑τ−1

j=0 S
−
1 ◦ T j) ◦ Lk ν-a.s.

Therefore,

n−1Sn ≥ −n−1(
τ−1∑
j=0

S−
1 ◦ T j) ◦ Lk + n−1Sυk

≥ −k−1(
τ−1∑
j=0

S−
1 ◦ T j) ◦ Lk + υ−1

k+1Sυk ν-a.s.

The last inequality is due to the fact that υk is ν-a.s. strictly increasing,
which implies that k ≤ υk ≤ n. Under the integrablity of S−

1 , the Kingman
ergodic theorem implies that limn−1Sn exists µ-a.s. Thus the limit also
exists ν-a.s. Since k grows to infinity with n, it follows that

lim
n
n−1Sn ≥ − lim sup

k
k−1(

τ−1∑
j=0

S−
1 ◦ T j) ◦ Lk + lim inf

k
υ−1
k+1Sυk ν-a.s.

To conclude, it suffices to show that on lim infk{Sυk > 0}, one has ν-a.s :

i) lim inf
k

υ−1
k+1Sυk > 0 , and ii) lim sup

k
k−1 (

τ−1∑
j=0

S−
1 ◦ T j ) ◦ Lk = 0 .

13



Let us show i). Since υn =
∑n−1

k=0 τ ◦Lk ν-a.s., it follows by Lemma 2.3 and
the Birkhoff ergodique theorem that

lim
k
k−1υk+1 exists and is finite ν-a.s. (2.28)

We also have, by Lemma 2.3 and Theorem 2.1, that

lim inf
k

k−1Sυk > 0 ν-a.s on lim inf
k

{Sυk > 0}.

Therefore, the result follows:

lim inf
k

υ−1
k+1Sυk = lim inf

k
(k−1υk+1)

−1(k−1Sυk) > 0 ν-a.s on lim inf
k

{Sυk > 0}.

Now let us turn to the proof of ii). Since S−
1 is integrable, we have by the

Birkhoff ergodique theorem and the "absolutely continuous" argument that

lim
n
n−1

n∑
i=1

S−
1 ◦ T i exists and is finite ν-a.s. (2.29)

Since υk → ∞ ν-a.s., it follows that limk υ
−1
k

∑υk−1
i=0 S−

1 ◦ T i exists and is
finite ν-a.s. Letting f =

∑τ−1
j=0 S

−
1 ◦ T j, it is no difficult to see that

υk−1∑
i=0

S−
1 ◦ T i =

k−1∑
i=0

(
τ−1∑
j=0

S−
1 ◦ T j) ◦ Li =

k−1∑
i=0

f ◦ Li ν-a.s.

It follows by (2.28) and (2.29) that

lim
k
k−1

k−1∑
i=0

f ◦ Li = lim
k
(k−1υk)(υ

−1
k

υk−1∑
i=0

S−
1 ◦ T i) exists and is finite ν-a.s.

This implies that k−1f ◦Lk converges to 0 ν-a.s., which concludes the proof.

The following result, which we state without proof, follows directly from
Corollary 2.1 for Point 1. and Corollary 2.2 for Point 2. through the applica-
tion of the function − log.

Corollary 2.3. Suppose that T is ergodic and let {γn}n≥1 ∈ RN be a positive
sub-multiplicative process (i.e for all n, s ∈ N∗ 0 ≤ γn+s ≤ γn×γs◦T n a.s.).
Let A ∈ B with µ(A) > 0.
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1. If µ(lim infn{γn < 1}) > 0, then γ is almost surely constant in R and

γ := lim sup
n

n−1 log γn < 0 a.s.

2. If E log+ γ1 is finite and, almost surely, the sequence (γn : T n ∈ A) is
strictly less than 1 from a certain period, then

γ = lim
n
n−1 log γn = lim

n
n−1E log γn = inf

n
n−1E log γn < 0 a.s.

Recall that γ is almost surely constant. The previous corollary is more
general than Lemma 3.4 of Bougerol and Picard (1992), see the next corollary.
Point 1. of Corollary 2.3 does not require any integrability condition, it
applies to all sub-multiplicative ergodic sequences and only needs its values to
be negative for n large enough. This result also enables the characterization
of the case where the top-lyapunov exponent of a class of cocycles on a
measure preserving transformation is negative.

Remark 2.4. If E log+ γ1 is not finite, then the conclusion of Point 2. of
Corollary 2.3 is no longer valid. Indeed, for all n, let αn = e−1 un

un−1
where

(un)n∈z is a positive iid sequence such that E ln+ u0 = ∞. Consider the
measure-preserving dynamical system given by the quadruplet: RZ and its
Borel σ-algebra, the push-forward probability measure Pu of (un) and the shift
operator T . It is easy to see that the process (γn)n≥1, where γn =

∏n
k=1αn,

is a sub-multiplicative process. We show, in Appendix A.1, that there exists a
measurable set A with Pu(A) > 0 such that the sequence (γn : T n ∈ A) con-
verges almost surely to 0 and on the other hand that lim supn n

−1 log γn ≥ 0.
This is because E ln+ γ1 = ∞.

Corollary 2.4. (Bougerol and Picard, 1992, Lemma 3.4) Let {Mn}n≥1 be
an ergodic strictly stationary sequence in the space of the d × d real ma-
trices. We suppose that E

(
log+ ∥M0∥

)
is finite and that, almost surely,

limn→+∞ ∥MnMn−1 · · ·M1∥ = 0. Then

γ := inf
n∈N

1

n
E (log ∥MnMn−1 · · ·M1∥) < 0.

Proof. Let γn = log ∥MnMn−1 · · ·M1∥ for all n ∈ N. Note that
P(lim infn{γn < 1}) = 1 if limn→∞ γn = 0 a.s. Since {γn}n≥1 is a
sub-multiplicative sequence, the result follows from Corollary 2.3 and the
Kingman’s subadditive ergodic theorem (see also Furstenberg and Kesten
(1960)).
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3 Stationarity of fGARCH models in C0

In this section, we study the existence of a stationary solution of the func-
tional GARCH models in the space of continuous functions (see Aue et al.
(2017)).

A sequence (rt : t ∈ Z) of random elements where each random object
rt is a curve (rt(u) : u ∈ [0, 1]) in C[0, 1], the space of continuous functions
on [0, 1], is called a functional GARCH process of orders (1, 1), abbreviated
by fGARCH(1, 1), if it satisfies the equations

rt = σtηt,

σ2
t = δ + αr2

t−1 + βσ2
t−1 = δ +

∫
γt(·, s)σ2

t−1(s)ds = δ + γtσt−1,
(3.1)

where (ηt : t ∈ Z) is a sequence of independent and identically distributed
(iid) random functions in C[0, 1], δ is a positive function and the integral oper-
ators α and β, i.e. (αx)(u) =

∫
α(u, s)x(s)ds and (βx)(u) =

∫
β(u, s)x(s)ds

are positive, i.e. they map nonnegative functions to nonnegative function.
γt(u, s) = α(u, s)η2

t−1(s) + β(u, s) is an element of C[0, 1]2.
By extending our considerations to include strictly stationary and ergodic

but non-id innovations, and by replacing the interval [0, 1] with an arbitrary
compact set K, we can generalize the autoregressive model with non-negative
random functional coefficients with Eq. (3.2) below to include a wide range
of conditional volatility models. Furthermore, by allowing the coefficients δ,
α, and β to be stochastic processes rather than constants, and by dropping
the assumption that γ = α + β must be an integral operator, we can obtain
even more flexibility in our modeling approach. The model is as follows:

ht = δ(ηt−1) + γ(ηt−1)ht−1,
(3.2)

where the positive stochastic curve δt = δ (ηt) and linear operator γt = γ (ηt)
are measurable functions of ηt.

We can see that Model (3.2) include the functional GARCH consid-
ered in (3.1). If K = {1}, we obtain the univariate class of GARCH(1, 1)
model of He and Teräsvirta (1999) and if K is finite we get the class
of multivariate-constant conditional correlation and univariate asymmet-
ric power GARCH(p,q), see the AR(1) representation of Maïnassara et al.
(2022).

Across the different normed vector spaces, we will unambiguously use the
classical notation of the norm, ∥ ·∥. We recall that F := C(K) equipped with
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the uniform norm ∥x∥ = sup{|x(u)|, u ∈ K} is a Banach space. The space
of the linear endomorphisms in F is equipped with the usual operator norm
∥α∥ = sup{∥α(x)∥, ∥x∥ ≤ 1}. Denoting e : K ∋ u 7−→ 1, remark that for all
positive operator α, ∥α∥ = ∥αe∥. For all x ∈ F, let inf x = inf{|x(u)|, u ∈
K}.

The stationarity of Model (3.1) has been studied in (Aue et al., 2017,
Theorem 2.2) and in (Hörmann et al., 2013, Theorem 2.3) when the model
is reduced to a pure functional ARCH. In both papers, they give a sufficient
condition for the existence of a stationary solution. The weakest condition
is obtained by Aue et al. (2017). They show that if

−∞ ≤ E log ∥γ0∥ < 0, (3.3)

then Model (3.1) have a unique, strictly stationary and nonanticipative so-
lution in C[0, 1].

Contrary to the multivariate setup, to our knowledge, necessary and suf-
ficient conditions for the existence of a stationary solution of Model (3.1)
have never been established. As noted by Cerovecki et al. (2019, Remark 1),
one of the main challenges in establishing these conditions is to extend the
contraction property of random matrices to linear operators. Since we have
established this result in Corollary 2.3, we are ready to provide necessary
and sufficient conditions for the existence of a stationary solution for the
general functional GARCH models considered in (3.2). To establish theses
conditions, the following assumptions will be made.

A1 (ηt) is iid.

A2 (ηt) is strictly stationary and ergodic and E(log+ ∥γ0∥) is finite.
For all t ≥ 0, let

γ
(0)
t = idF and γ

(n)
t = γt ◦ · · · ◦ γt−n+1 for all n ≥ 1.

Consider the following assumption.

P(inf{
+∞∑
k=0

γ
(k)
0 δ−k, u ∈ K} = 0) < 1. (3.4)

Note that if P(inf{δ0(u), u ∈ K} = 0) < 1 then we have (3.4). Since
we deal with volatility curves, it is not restrictive to assume that (3.4)
holds. This condition is satisfied by most commonly used volatility mod-
els and ensures that the solutions are positive on the entire curve in a non-
negligible set. Indeed, by iterating (3.2), we can see that any non-negative
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solution (ht) of (3.2) satisfies: ht ≥
∑∞

k=0 γ
(k)
t δt−k. Thus, (3.4) implies that

P(inf{h0(u), u ∈ K} = 0) < 1.

For all t ∈ Z, define wt :=
∑+∞

k=0 γ
(k)
t δt−k ∈ [0,∞]K . Note

that the sequence of continuous, positive, and non-decreasing functions
(
∑n

k=0 γ
(k)
t δt−k)n converges pointwise to wt a.s., even though the limit may

not be finite at some points. It is also important to note that the convergence
may not be uniform. Therefore, wt is not necessarily continuous.

Now we state the main result of this section.

Theorem 3.1. Let γ = lim supn
1
n
log(∥γ(n)

0 ∥).

1. Suppose that (3.4) hold. If A1 or A2 hold and Equation (3.2) has a
positive stationary solution in F then

γ < 0 a.s.

2. Conversely, if E(log+ ∥δ0∥) < ∞ and γ < 0 then (
∑n

k=0 γ
(k)
t δt−k)n

converges in F to wt and (wt) is the unique (continuous, positives and
non-anticipative) stationary solution of (3.2).

Remark 3.1.

1. In views of Corollary 2.3, under A1, γ is almost surely constant with
value in [−∞,∞[. Under A2, the subadditive ergodic theorem implies
that

γ = lim
n→+∞

1

n
log(∥γ(n)

0 ∥)

= lim
n→+∞

1

n
E log(∥γ(n)

0 ∥) = lim
n→+∞

1

n
E log(∥γn ◦ · · · ◦ γ1∥)

= inf
n≥1

1

n
E log(∥γn ◦ · · · ◦ γ1∥).

(3.5)

2. If (ηt) is strictly stationary and ergodic and E(log+ ∥γ0∥) is not finite,
the following example, in the scalar case, shows that it is possible to
have a stationary solution and at the same time γ ≥ 0. Let us take
ηt = ut, δt = 1/ut, γt = e−1ut−1/ut, where (ut) is defined in Remark
2.4. We have

∑+∞
k=0 γ

(k)
t δ−k = (1/ut)

∑+∞
k=0 e

−k < ∞ a.s. It is easy
to see that this process is a strictly stationary (and ergodic) solution.
However, using the arguments used in Appendix A.1, we can see that
γ = lim supn

1
n
log γ

(n)
0 ≥ 0 and E log+ γ0 = ∞.
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For all δ ∈ C[0, 1], we can remark that if

for all u ∈ [0, 1], δ(u) > 0, i.e. inf
u∈[0,1]

δ(u) > 0, (3.6)

then (3.4) holds. Therefore, we have the following immediate corollary.

Corollary 3.1. If Eq. (3.6) hold and A1 or A2 is verified, Model (3.1)
admits a (unique and non-anticipative) positive and strictly stationary (and
ergodic) solution in C([0, 1]) if and only if

lim sup
n

1

n
log(∥γ0 ◦ · · · ◦ γ−n+1∥) < 0 a.s. (3.7)

Moreover, under A2, Eq. (3.7) is equivalent to

E [log ∥γn ◦ · · · ◦ γ1∥] < 0 for some n. (3.8)

Proof. Under A2, the equivalence between equations (3.7) and (3.8) comes
from Eq. (3.5). Thus, Corollary 3.1 is a direct consequence of Theorem
3.1.

Since (3.8) is necessary and sufficient under A2, which does not require
the iid assumption, it is clear that this condition is weaker than the sufficient
condition, Eq. (3.3), given by Aue et al. (2017).

In order to prove Theorem 3.1, we will use the following general result.
It is used, under A1, to address the other challenge mentioned in (Cerovecki
et al., 2019, Remark 1), which consists in showing (3.21) from (3.20). Point
2. of Corollary 2.3 is used to handle this step under A2.

Lemma 3.1. Let (xn)n≥0 and (yn)n≥0 be real value processes. If (i) (xn)n≥0

is identically distributed, (ii) xn+1 and σ((xs,ys+1), s ≤ n) are independent
and (iii) P(x0 = 0) < 1 then

yn → 0 a.s when n→ ∞ on G := {xnyn → 0 a.s when n→ ∞}

By replacing the condition P(x0 = 0) < 1 in the previous lemma by the
slightly stronger assumption that x0 is not almost surely constant, we can
establish the following more general result:

yn → 0 a.s when n→ ∞ on {(xnyn) converges},

see Proposition A.1 in Appendix A.2.
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Proof of Lemma 3.1. It suffices to prove that

for all ε > 0, P
(
lim inf

n
{|yn| < ε} ∩G

)
= P({

∑
n≥1

1{|yn|≥ε} <∞}∩G) = P(G).

Define Gε = {
∑

n≥1 1{|xnyn|≥ε} < ∞} = lim infn {|xnyn| < ε} . Note that
(iii) implies that

there exists δ > 0 such that P(|x0| ≥ δ) > 0. (3.9)

Fix ε and for this δ, let’s show first that for all 0 < ε′ ≤ δε,

P({
∑
n≥1

1{|yn|≥ε} <∞} ∩Gε′) = P(Gε′). (3.10)

Since {
∑

n≥1 1{|yn|≥ε′/δ} < ∞} ⊂ {
∑

n≥1 1{|yn|≥ε} < ∞} for all ε′ ≤ δε, to
prove (3.10), it suffices to show that for all ε′ ≤ δε,

P({
∑
n≥1

1{|yn|≥ε′/δ} <∞} ∩Gε′) = P(Gε′). (3.11)

To prove this, we will use a conditional version of the Borel-Cantelli lemma.
Let ε′ > 0. Since

|xnyn| ≥ δ1{|xn|≥δ}|yn| and 1{δ1{|xn|≥δ}|yn|≥ε′} = 1{|xn|≥δ}1{|yn|≥ε′/δ},

we have
1{|xnyn|≥ε′} ≥ 1{|xn|≥δ}1{|yn|≥ε′/δ}.

Define, for all n ≥ 0, zn = 1{|xn|≥δ}1{|yn|≥ε′/δ}, it follows that∑
n≥1

zn <∞ a.s on Gε′ . (3.12)

Let Fn = σ((xs,ys+1), s ≤ n), for all n ≥ 0. Since yn is Fn−1-measurable
and in view of (ii), xn and Fn−1 are independent, then, also by (i), for all
n ≥ 1,

mn := E(zn|Fn−1) = P(|x0| ≥ δ)1{|yn|≥ε′/δ},

hence, by (3.9), {
∑

n≥1mn < ∞} = {
∑

n≥1 1{|yn|≥ε′/δ} < ∞} a.s. This
result, the fact that (Fn)n≥0 is a sequence of nondecreasing σ-algebras, zn

is Fn-measurable, and Theorem 1 of Chen (1978) (see also Freedman (1973,
Eq. 5 and 6)) imply that∑

n≥1

1{|yn|≥ε′/δ} <∞ a.s on {
∑
n≥1

zn <∞}. (3.13)
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Equation (3.11) is a direct consequence of (3.12) and (3.13). This show
(3.10). Since (G1/m)m∈N is a nonincreasing sequence of sets and

G = ∩m≥1 ∪N≥1 ∩n≥N {|xnyn| < 1/m} = ∩m≥1G1/m,

it follows by the monotone convergence theorem and (3.10) that

P(G) = lim
m→∞

P(G1/m)

= lim
m→∞

P({
∑
n≥1

1{|yn|≥ε} <∞} ∩G1/m)

= P({
∑
n≥1

1{|yn|≥ε} <∞} ∩G),

which completes the proof.

Proof of Theorem 3.1.
We prove 1 . Let us first consider that A1 holds. For all t ∈ Z and

n ∈ N, let wt,n =
∑n

k=0 γ
(k)
t δt−k. Suppose that (3.2) has a positive stationary

solution (ht)t∈Z in F. By iterating (3.2), it follows that for all n ≥ 0 and t ∈
Z, wt,n ≤ ht. This implies that a.s. (wt,n)n≥0 is a sequence of nondecreasing
functions bounded by ht. Therefore, a.s. (wt,n)n converges pointwise (with
finite limit) to wt. Noting that for all n and t, w0 = wt,n−1 + γ

(n)
0 w−n, one

has a.s.
γ
(n)
0 w−n

pw−→ 0 when n→ ∞

Since
(infw−n)γ

(n)
0 e ≤ γ

(n)
0 w−n, (3.14)

we have
(infw−n)γ

(n)
0 e

pw−→ 0 when n→ ∞ a.s. (3.15)

Consider that (3.4) holds. The proof relies on the following intermediate
results.

a) there exists n0 ≥ 1 such that P(infw0,n0 = 0) < 1.

b) lim sup
k

(n0k)
−1 log(∥γ(n0k)

0 ∥) < 0 a.s,

c) lim sup
k

(n0k + p)−1 log(∥γ(n0k+p)
0 ∥) < 0 a.s for all p = 0, 1, · · ·n0 − 1

Let us proceed by contradiction to prove a). Suppose that

for all n ≥ 1, infw0,n = 0 a.s. (3.16)
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For all n ≥ 1, let Jω
n = {u ∈ K : w0,n(u) = 0}. The sequence (w0,n)n≥0

is continuous, positive, and non-decreasing, therefore, a.s., (Jn)n≥0 is a se-
quence of non-empty, non-increasing, random, compact sets. By Cantor’s
intersection theorem and Eq. (3.16), J :=

⋂
n≥0 Jn ̸= ∅ a.s. The sequence

(w0,n)n≥1 converges pointwise to w0, and almost surely w0,n = 0 on J for
all n ≥ 1. This implies that w0 = 0 on J a.s., which contradicts equation
(3.4). This completes the proof of part a).

We now prove b). By iteration, note that for all n ≥ 0,

h0 = wt,n−1 + γ
(n)
0 h−n. (3.17)

It follows that (γ
(n)
0 h−n) is a sequence of nonincreasing functions, pointwise

bounded by ht and then, almost surely, it converges pointwise. Since, by
continuity, h0 is almost surely bounded then limK→∞ P(suph0 < K) = 1.
It follows by (3.4) that there exists K > 0 and ϵ > such that P(suph0 <
K, infw0 > ϵ) > 0. Noting that

γ
(n)
0 h−n1{suph−n≤K, inf w−n>ϵ} < (K/ϵ) infw−nγ

(n)
0 e,

it follows by (3.15) that

γ
(n)
0 h−n1{suph−n<K, inf w−n>ϵ}

pw−→ 0 as n→ ∞. (3.18)

Since the ergodic theorem implies that almost surely, 1{suph−n<K, inf w−n>ϵ} =
1 for an infinite number of n, it follows that the sub-sequence
(γ

(n)
0 h−n : 1{suph−n<K, inf w−n>ϵ} = 1) converges, almost surely, pointwise to

the limit of (γ(n)
0 h−n). It follows by (3.18) that this limit is 0, i.e.

γ
(n)
0 h−n

pw−→ 0 when n→ ∞ a.s. (3.19)

From this and Eq. (3.17) one has F ∋ h0 = w0 a.s. It follows by Dini’s
Theorem that (w0,n)n converges uniformly to w0 a.s. Hence,

∥w0 −w0,n∥ = ∥γ(n)
0 w−n∥ −→ 0 when n→ ∞ a.s. (3.20)

For all k ≥ 0, let xk = infw−n0k,n0 and yk = ∥γ(n0k)
0 ∥. Note that (xk, yk(u))

verifies the conditions of Lemma 3.1 because of a) and the fact that (ηt) is
iid. Since infw−n0k,n0∥γ

(n0k)
0 e∥ = infw−n0k,n0∥γ

(n0k)
0 ∥ ≤ ∥γ(n0k)

0 w−n0k∥, it
follows by (3.20), and Lemma 3.1 that

∥γ(n0k)
0 ∥ −→ 0 when k → ∞ a.s. (3.21)
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Since (∥γ(n0k)
0 ∥)k is a sub-multiplicative sequence, by (3.21) and Point 1. of

Corollary 2.3, we have

lim sup
k

(n0k)
−1 log(∥γ(n0k)

0 ∥) = lim sup
k

(
k

n0k
)[k−1 log(∥γ(n0k)

0 ∥)] < 0 a.s.

This concludes the proof of b). To prove c), remark by stationarity and b)
that for all p = 0, 1, · · ·n0 − 1, lim supk(n0k)

−1 log(∥γ(n0k)
−p ∥) < 0. Therefore

ψ : = lim sup
k

(n0k + p)−1 log(∥γ(n0k+p)
0 ∥)

≤ lim sup
k

(n0k + p)−1 log(∥γ(p)
0 ∥) + lim sup

k
(n0k + p)−1 log(∥γ(n0k)

−p ∥)

= lim sup
k

(
n0k

n0k + p
)[(n0k)

−1 log(∥γ(n0k)
−p ∥)] < 0 a.s.

(3.22)
Noting that N = ∪0≤p≤n0−1{n0k + p : k ∈ N}, it follows that

lim sup
n

1

n
log ∥γ(n)

0 ∥ ≤ max
0≤p≤n0−1

(
lim sup

k
(n0k + p)−1 log(∥γ(n0k+p)

0 ∥)
)
< 0.

which gives the first point under A1.

We now prove the claim under A2. First observe that the iid assumption
is only used, in Lemma 3.1, to derive (3.21) from (3.20). Therefore, all the
results showed before (3.20) hold under A2. Hence, (3.20) implies that

1{inf w−n>ϵ}∥γ(n)
0 ∥ −→ 0 when k → ∞ a.s.

Therefore, the sequence (∥γ(n)
0 ∥ : infw−n > ϵ}) converges almost surely

to 0. The result follows from arguments used in Remark 2.4 (to define the
dynamic system), Appendix A.1 (to verifies the condition of the corollary)
and Point 2. of Corollary 2.3.

We now prove 2. We have 2

lim sup
n

1

n
log(∥γ(n)

0 δ−n∥) ≤ lim sup
n

1

n
[∥γ(n)

0 ∥+ log+(∥δ−n∥)]

≤ γ + lim sup
n

1

n
log+(∥δ−n∥)

= γ < 0.

2For all non negative stationary process (Xn)n≥1 such that EX1 < ∞, one has
lim supn→∞ n−1Xn = 0. Indeed, for all ϵ > 0, noting that the function f(t) =
P
(
t−1X1 > ϵ

)
is decreasing, we have

∑∞
n=1 P

(
n−1Xn > ϵ

)
≤

∫∞
0

P
(
ϵ−1X1 > t

)
dt =

ϵ−1EX1 < ∞. The convergence follows from the Borel-Cantelli lemma.
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Therefore, by Cauchy’s rule, (w0,n)n≥1 converges absolutely almost surely.
Thus, w0 ∈ F a.s. It is easy to verify that the continuous, positive, station-
ary process (wt)n is non-anticipative and satisfies (3.2). The proof of the
uniqueness is standard, see for instance (Kandji, 2023, Appendix A). This
completes the proof.

4 Perspective
The main result of this paper extends the result of Kesten (1975) on the
growth rate of sums of stationary sequences to superadditive processes. Our
result is established under weaker conditions than those of Kesten (1975).
Using a result from Tanny (1974), Kesten show in the same paper that if
{Sn}∞n=1 is an additive sequence, then on {Sn → ∞}, 0 < lim inf n−1Sn <
lim supn−1Sn = ∞ a.s. or limn−1Sn exists and limn−1Sn > 0. An inter-
esting question that could be considered for further work is to see if this
result also generalizes to superadditive processes. That is, in which cases can
the limit superior in Theorem 2.1 be replaced by a limit.

We also provide a necessary and sufficient condition, without moment
condition, for the stability of a class of functional GARCH(1, 1) models in the
space of the continuous functions. Our results can be easily extended, in the
same space, to higher-order GARCH(p, q) models using the same argument.
However, since norms are not equivalent in the infinite-dimensional setting,
it would be interesting to investigate whether these conditions remain true
when considering a different space, such as Lp spaces.
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Appendix: Proofs

A Appendix: Complementary Proofs

A.1 Complement to Remark 2.4

Let δn = 1
un−1

. Since u0 is not almost surely constant then there exists
s > 0 such that Pu(δ0 > s) > 0. Let A = {δ0 > s}. It is easy to see that
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γnδn = e−n

u0
→ 0 a.s. as n→ 0. Thus γn1A ◦ T n = γn1δn>s ≤ γnδn → 0 a.s.

It follows that (γn : T n ∈ A) converges almost surely to 0.
On the other hand, since γn = un

u0
e−n, then lim supn n

−1 log γn < 0 a.s.
implies that (une

−n) converges to 0 a.s. However, one has
∞∑
n=0

P(une
−n > 1) =

∞∑
n=0

P(ln+ u0 > n) ≥
∫ ∞

0

P(ln+ u0 > t)dt

= E(ln+ u0) = ∞.

It follows by the second Borel-Cantelli lemma that P(lim sup{une
−n > 1}) =

1 and then (zne
−n) does not converge to 0.

Now we compute E ln+ γ1. Let a real K > 0 such that P(ln+ u0 ≤
K) > 0. Since ln+ γ1 ≥ ln+ u1 − ln+ u0, it follows that ln+ γ1 ≥
ln+ u11ln+ u0≤K − ln+ u01ln+ u0≤K . Hence E ln+ γ1 ≥ E ln+ u1P(ln

+ u0 ≤
K)− E ln+ u01ln+ u0≤K = ∞, because the second term is finite.

A.2 On the convergence of the product of two indepen-
dent random elements

The following result, which generalises Lemma 3.1 is of independent interest.

Proposition A.1. Let (xn)n≥0 and (yn)n≥0 be real value processes. If (i)
(xn)n≥0 is identically distributed, (ii) xn+1 and Fn := σ((xs,ys+1), s ≤ n),
are independent and (iii) x0 is not almost surely constant, then

1. xnyn → 0 a.s when n→ ∞ on {xnyn converges}
2. yn → 0 a.s when n→ ∞ on {xnyn converges}
3. If (xnyn) converges in probability then the limit is 0.

Proof. For the first point, it suffices to prove that

P ({| lim supxnyn| > 0, xnyn converges}) = 0. (A.1)

For all ϵ > 0 and t ∈ R, let B(t, ϵ) := (t − ϵ, t + ϵ). Let z = lim supxnyn

and G = {xnyn converges}. Note that on G, z is finite and (xnyn) converges
to z. We argue by contradiction: suppose that P ({|z| > 0} ∩G) > 0. Since
this condition implies that P (G) > 0, let PG be the conditional probability
given G. Noting that PG(|z| > 0) > 0 we have that the support of z
under PG contains a non-zero element z0. Thus, for all ϵ > 0 we have
PG (z ∈ B(z0, ϵ)) > 0 i.e.

P ({z ∈ B(z0, ϵ)} ∩G) > 0. (A.2)
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The condition (iii) implies that the support of x0 under P contains at least
two different elements x1 and x2. Since x1 ̸= x2, we can assume without loss
of generality that x1 ̸= 0. Let y0 = z0/x1, and ϵ0, ϵ1, ϵ2, ϵ3 > 0 such that

1) {xy : (x, y) ∈ B(x2, ϵ2)×B(y0, ϵ3)} ∩B(z0, ϵ0) = ∅,
2) if (z, x) ∈ B(z0, ϵ0)×B(x1, ϵ1) then z/x ∈ B(y0, ϵ3).

(A.3)

The point 1 ) in (A.3) comes from the fact that (x, y) 7→ xy is continuous at
(x2, y0) and x2y0 = z0(x2/x1) ̸= z0. The second point is because (z, x) 7→ z/x,
defined on B(z0, ϵ) × B(x1, ϵ) for ϵ small enough, is continuous at (z0, x1).
Indeed, for 1 ), take ϵ0 > 0 and δ > 0 such that

B(x2y0, δ)} ∩B(z0, ϵ0) = ∅.

Choose ϵ2, ϵ3 > 0 such that

(x, y) ∈ B(x2, ϵ2)×B(y0, ϵ3),

we have xy ∈ B(x2y0, δ) and thus

{xy : (x, y) ∈ B(x2, ϵ2)×B(y0, ϵ3)} ∩B(z0, ϵ0) = ∅.

Noting that this statement remains true for smaller ϵ0, ϵ2 and ϵ3, let’s fix ϵ2
and ϵ3, and choose ϵ0 smaller than its previous value and take also ϵ1 such
that

(z, x) ∈ B(z0, ϵ0)×B(x1, ϵ1).

We thus have z/x ∈ B(y0, ϵ3).
For i ∈ {1, 2}, we have by the strong law of large numbers that

n−1

n∑
k=0

1{xk∈B(x1,ϵ1)} → P(x0 ∈ B(x1, ϵ1)) a.s when n→ ∞.

Since P(x0 ∈ B(x1, ϵ1)) > 0, then P(S) = 1 where S =
{
∑n

k=0 1{xk∈B(x1,ϵ1)} → ∞}. We have by this result and (A.2) that P (E) > 0
where

E = S ∩ {z ∈ B(z0, ϵ0)} ∩G.

Since on E (xnyn) converges to z, which is in the open set B(z0, ϵ0),
then there exists an integer N (random integer) such that if n ≥ N, then
xnyn ∈ B(z0, ϵ0). It follows by 1 ) (A.3) that∑

k≥1

1{xk∈B(x2,ϵ2), yk∈B(y0,ϵ3)} <∞ a.s on E. (A.4)

26



Since on S, and thus on E, xn ∈ B(x1, ϵ1) for infinitely many n, it follows
also that

{n : xnyn ∈ B(z0, ϵ0), xn ∈ B(x1, ϵ1)}

is infinite. Therefore, we have by 2 ) (A.3) that∑
k≥1

1{yk∈B(y0,ϵ3)} = ∞ on E. (A.5)

To arrive at a contradiction, let’s also show that∑
k≥1

1{yk∈B(y0,ϵ3)} <∞ a.s on E.

In views of (A.4), it is equivalent to show that∑
k≥1

1{yk∈B(y0,ϵ3)} <∞ a.s on {
∑
k≥1

zk <∞} (A.6)

where
zk = 1{xk∈B(x2,ϵ2), yk∈B(y0,ϵ3)} = 1{xk∈B(x2,ϵ2)1yk∈B(y0,ϵ3)}.

To get this result, remark that zn is Fn-measurable and since yn is Fn−1-
measurable and xn and Fn−1 are independent, then for all n ≥ 1

mn := E(zn|Fn−1) = P(x0 ∈ B(x2, ϵ2))1{yn∈B(y0,ϵ3)}.

It follows from the converse part of Theorem 1 of Chen (1978) that∑
k≥1

mk <∞ a.s on {
∑
k≥1

zk <∞}.

Noting that

{
∑
k≥1

mn <∞} = {
∑
k≥1

1{yk∈B(y0,ϵ3)} <∞} a.s,

by the fact that P(x0 ∈ B(x2, ϵ2)) > 0, (A.6) follows from the previous result.
This contradicts (A.5) since P(E) > 0, and thus we have (A.1).

The second point follows from the first point and Lemma 3.1.
For the last point, note that the convergence in probability implies con-

vergence on a sub-sequence (xϕ(n)yϕ(n)) almost surely. Since (xϕ(n),yϕ(n))
checks the conditions of Proposition A.1, the result follows from the first
point. This concludes the proof.
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A.3 Ergodic Lemmas

This results may not be new. Since we have not been able to find it in the
literature, we provide a proof.

Lemma A.1. Let I ∈ Iµ with µ(I) > 0. Let ν be the probability mea-
sure in (Ω, B) given by the conditional probability given I (i.e for all
A ∈ B, ν(A) = µ(I)−1µ(A∩ I)). Then (Ω,B, ν, T ) is a measure-preserving
dynamical system, i.e.

for all A ∈ B, ν(T−1(A)) = ν(A),

Proof. For all I ∈ Iµ and A ∈ B, because

µ(I∆T−1(I)) = 0,

I ∪ I∆T−1(I) = T−1(I) ∪ I∆T−1(I) and
T−1(A) ∩ T−1(I) = T−1(A ∩ I),

one has

µ(T−1(A) ∩ I) = µ(T−1(A) ∩ (I ∪ I∆T−1(I))

= µ
(
T−1(A) ∩ (T−1(I) ∪ I∆T−1(I))

)
= µ(T−1(A) ∩ T−1(I)) = µ(T−1(A ∩ I))
= µ(A ∩ I).

(A.7)

The result follows by dividing by µ(I).

Lemma A.2. For all invariant set I, Let C(I) :=
⋂∞

n=0 T
−n(I), where T 0 =

IdΩ. One has

1. C(I) ∈ Iµ

2. µ (C(I)) = µ(I)

3. for all ω ∈ C(I) and n ≥ 0, T n(ω) ∈ C(I).

Proof. Let show the first point. If I ∈ I then

µ
(
T−2(I)∆T−1(I)

)
= µ(T−2(I) ∪ T−1(I))− µ(T−2(I) ∩ T−1(I))

= µ(T−1(I) ∪ I)− µ(T−1(I) ∩ I)
= µ

(
T−1(I)∆I

)
= 0,

and then T−1(I) ∈ Iµ. Hence, by recurrence, we show that C(I) is the
intersection of elements of the σ-algebra Iµ, and thus C(I) ∈ Iµ.
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For the second statement, using (A.7) for A = I, one has µ(T−1(I) ∩
I) = µ(I). Therefore, by doing the same operation on

⋂n
k=0 T

−k(I) for
n = 1, 2, · · · , one has by recurrence and the monotone convergence theorem
that µ (C(I)) = µ(I).

For the last one, note that ω ∈ C(I) is equivalent to, for all n ≥ 0,
T n(ω) ∈ I. It follows that, ω ∈ C(I) implies that for all p ≥ 0 and for all
n ≥ 0, T n+p(ω) = T n(T p(ω)) ∈ I, i.e. for all p ≥ 0, T p(ω) ∈ C(I).
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