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Abstract
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than predicting a single grouping of units, they deliver a collection of groupings
with the same flavor as the so-called LASSO regularization path. Mild condi-
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so-called grouped fixed effects and post-spectral estimators (Bonhomme and
Manresa, 2015; Chetverikov and Manresa, 2021). In contrast, the new estima-
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1 Introduction

Suppose to observe a sample of longitudinal or panel data {(yit, x′
it)′ : 1 ≤ i ≤ N, 1 ≤

t ≤ T} and consider the grouped fixed effects model:

yit = x′
itθ

0 + α0
g0

i t + vit, i = 1, ..., N, t = 1, ..., T, (1.1)

where i denotes cross-sectional units, t denotes time periods, yit ∈ R is a depen-
dent variable, θ0 ∈ Rp is an unknown vector of interest, and xit ∈ Rp is a vector
of time-varying covariates contemporaneously uncorrelated with the zero-mean ran-
dom variable vit ∈ R but potentially correlated with the group-specific unobservable
α0

g0
i t ∈ A ⊂ R (which rises the identification challenge). We adopt a “fixed effects”

approach, leaving the group membership variable g0
i ∈ {1, ..., G0}, the number of

groups G0, and the vector of group-specific time effects (α0
1t, ..., α0

G0t)′ ∈ AG0 unre-
stricted and considering them as parameters to be estimated.1 Under prior restrictions
(e.g., a known upper bound) on G0, Bonhomme and Manresa (2015)’s so-called GFE
estimator and Chetverikov and Manresa (2021)’s post-spectral estimator are both
consistent for g0

i (up to group relabeling) and root-NT (resp. root-N) asymptotically
normal for θ0 (resp. α0

gt) as N and T diverge jointly, provided T grows at least as
some power of N and G0 is fixed.

Unfortunately, the GFE estimator cannot be computed in polynomial time in most
real-world datasets of interest.2 While the post-spectral estimator is computationally
straightforward, it requires knowledge of G0, which could be restrictive in practice.
This motivates seeking for new identification approaches.

In this paper, we propose a novel identification strategy for all the model parame-
ters, including G0. The argument is constructive and leads to what we generically
call pairwise differencing (PWD) estimators. Mild conditions are found that ensure
PWD estimators enjoy the same asymptotic guarantees as GFE and post-spectral
estimators. In contrast, they have polynomial computational complexity and never

1This special case of Bai (2009)’s interactive fixed effects models was introduced in a seminal
paper by Bonhomme and Manresa (2015).

2This is related to NP-hardness of the k-means problem (see, e.g., Aloise et al., 2009). We note
that inference based on heuristic solutions can be misleading (see, e.g., Chen, 2022).
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use any prior knowledge on G0. Instead of predicting a single grouping of units, they
provide a collection of groupings indexed by a regularization parameter with the same
flavor as the so-called glmnet’s LASSO regularization path. This increased flexibility
allows for in-depth exploration of the underlying network structure and sensitivity
analysis of the results, while delivering an appealing visualization tool. We demon-
strate the usefulness of the new approach in a short application to Acemoglu et al.
(2008)’ panel data.

A quick glimpse at equation (1.1) suffices to see that identification is rendered dif-
ficult only because the group membership variables g0

i are unknown. Otherwise, a
pooled ordinary least squares (OLS) regression on the interactions of group and time
dummies would deliver, under appropriate regularity conditions, consistent estimates
of the remaining structural parameters as N and T diverge (see, e.g., Bonhomme and
Manresa, 2015). Our key insight is that identification of the grouping, at least in
the special case with no covariates, can be achieved separately from identification of
the remaining structural parameters. PWD estimators then proceed in two steps: (i)
estimate the grouping, and (ii) project the dependent variable on the interactions of
estimated group dummies and time dummies. The approach easily extends to models
with covariates if a consistent preliminary estimate θ̂1 for θ0 is available. This is
because we can come back to the simple case by considering the sparse “pure factor
model” yit−x′

itθ̂
1. We develop two-step PWD estimators whose asymptotic properties

are not affected by the first-stage provided θ̂1 is
√

T -consistent.3

Following the statistical literature on graphon estimation (see, e.g. Klopp et al.,
2017), we directly target identification of the adjency matrix W0 := (W 0

ij)(i,j)∈V 2 =
(1
{
g0

i = g0
j

}
)(i,j)∈V 2 of the graph G0 with vertices V = {1, ..., N} spanned by the

group membership variables. This approach elegantly incorporates normalization is-
sues since W0 is invariant to group relabeling. We exploit linearity of eq. (1.1) to
build pairwise-level tests φi,j of H0,i,j : g0

i = g0
j (and estimates Ŵij = 1 − φi,j of W 0

ij)
based on hard-thresholding of suitable differencing transformations of the dependent

3One may use off-the-shelf estimators such as provided in Wooldridge (2010) and Arellano and
Bond (1991) (when grouped effects are time-invariant) or the nuclear norm estimator of Moon and
Weidner (2019) (for the time varying case). All are computationally straightforward and meet the
√

T -rate restriction under appropriate conditions.
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variables.4 These only require elementary arithmetic operations. To establish asymp-
totic results, we leverage two other features of the model, which greatly simplify the
analysis compared to standard Stochastic Block Models (see, e.g., Gao et al., 2015;
Airoldi et al., 2008). First, G0 is such that there are no edges between units belong-
ing to different groups but all units in a given group are connected. In other words,
G0 consists of perfectly separated clusters or “communities”. Second, repeated mea-
surements provide the key identifying variation. Under standard group-separation
conditions and weak dependence and tails restrictions on the idiosyncratic shocks,
our estimates are sup-norm consistent, i.e., as N and T tend to infinity:

sup
(i,j)∈{1,...,N}2

|Ŵij − W 0
ij|

p→ 0, (1.2)

where p→ denotes convergence in probability. Our second insight is that, given (1.2)
and to avoid using k-means clustering of the rows of the matrix Ŵ (a NP-hard
problem), we propose to group units with identical rows in Ŵ. This procedure
always yields a partition of units into Ĝ ∈ {1, ..., N} non-emtpy groups.5

A threshold parameter cT ∈ (0, +∞) is needed to calibrate the test φi,j and our
asymptotic results hold provided cT decreases to zero sufficiently slowly as T → ∞.
This tuning parameter is the natural counterpart to the “hidden” tuning parameter
of GFE and spectral methods, namely, knowledge of the number of groups G0 (or
at least an upper bound). In practice, the researcher may report results for different
(incremental) choices of the threshold until it is so large that Ĝ = 1, or she can choose
a value by relying on cross-validation techniques.6

4In Mugnier (2022), we show how this approach yields nonparametric identification results in
nonlinear grouped fixed effects models. It is worth noting that such types of dyad, triad, or tetrad
comparisons have proven useful in a variety of different econometric contexts, especially in networks
analysis (see, e.g., Graham, 2017; Charbonneau, 2017; Jochmans, 2017; Zeleneev, 2020).

5Albeit close in spirit, the procedure is different from the binary segmentation algorithm devel-
oped in Wang and Su (2021) or the pairwise comparisons method proposed in Krasnokutskaya et al.
(2022). A popular and alternative approach to our hard-thresholding criterion is spectral cluster-
ing by considering the Laplacian of a dissimilarity matrix (see, e.g., Ng et al., 2002; von Luxburg,
2007; Chetverikov and Manresa, 2021). Instead, we propose a model-specific solution which yields
a regularization path for the number of groups and whose analysis is much simpler.

6We find that the path for Ĝ as a function of the threshold cT ∈ [0, +∞) exhibits a “roughly
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We study four estimators, each of them specifically tailored to accomodate particular
submodels of interest such as time-invariant group-specific effects (α0

gt = α0
g) or models

with no covariates (θ0 = 0). We depart from Pollard (1981) who provides asymptotic
theory only for a pseudo-true value in the cross-sectional case (the solution to the
population k-means sum of squares problem) since our asymptotic statements hold for
the true population parameter. Moreover, our theory covers the estimates effectively
reported by the researcher, which fundamentally differs from approaches relying on
heurisitic approximating algorithms as proposed in Bonhomme and Manresa (2015).

Monte Carlo simulations in the no covariates case confirm our theoretical results. We
find that while the choice of the threshold affects the estimated number of groups in
finite samples, it does not harm (up to a certain value) the quality of the predicted
clustering in terms of Precision rate and Rand Index.7 In other words, predicted
pairs of units on average effectively belong to the same population group. Hence,
the group-specific effects Hausdorff distance to the truth is small on average. The
ability of the PWD estimator to regroup these similar predicted pairs in a unique
predicted group (Recall rate) is more sensitive to the threshold but quickly improves
as T increases. We expect that the same patterns hold true if covariates are included.

The remainder of the paper is organized as follows. Section 2 introduces our main
arguments in models without covariates. Section 3 extends the approach to models
with covariates. Section 4 gathers results from the Monte Carlo experiments. Sec-
tion 5 contains the short empirical illustration. Section 6 concludes. All proofs are
collected in the Appendix. Matlab code for implementing the methods is provided in
Appendix A.9. Throughout the paper, we assume that A is a compact subset of R.

Notation For any vector-valued sequence {zit : 1 ≤ i ≤ N, 1 ≤ t ≤ T}, all (i, t, s) ∈
{1, ..., N} × {1, ..., T} × {2, ..., T}, let zi := T −1∑T

s=1 zis, żit = zit − zi and z̈is =
zis −zs−1. For any sequences of positive real numbers (an)n∈N and (bn)n∈N, let an ≳ bn

if and only if ∃(C, n0) ∈ (0, +∞) × N, ∀n ∈ N, n ≥ n0, an ≥ Cbn. The indicator
function 1 {·} equals one if · is true, 0 else. For any set A, |A| is the cardinal of A.
For any matrix M ∈ Rn×n, for all i ∈ {1, ..., n}, Mi,. denotes its ith row of M.

decreasing” pattern in all our settings (Monte Carlo and empirical application). Obtaining this path
is computationally straightforward given the low CPU time required by the method.

7See Section 4 for a formal definition of these metrics.
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2 A Simple Case Without Covariates

We present our approach in a simplified version of model (1.1) in which θ0 = 0 is
known (no covariates). Section 2.1 considers a model with time-invariant group-
specific effects (i.e., α0

gt = α0
g), introduces the pairwise differencing (PWD) estimator,

and establishes its asymptotic properties. Section 2.2 relaxes the time-homogeneity
assumption, introduces the tetrad pairwise differencing (TPWD) estimator, and es-
tablishes its asymptotic properties.

2.1 Time-Invariant Unobserved Heterogeneity

2.1.1 Model

Consider a specialization of model (1.1) to the following data generating process:

yit = α0
g0

i
+ vit, i = 1, ..., N, t = 1, ..., T. (2.1)

Let ΓN,G := {G} × {1, ..., G}N × AG. Our goal is to estimate a given realization

(G0, g0
1, ..., g0

N , α0
1, ..., α0

G0) ∈
∞⋃

G=1
ΓN,G

as N and T tend to infinity.

2.1.2 Pairwise Differencing Estimation

The pairwise differencing (PWD) estimator is obtained from the following steps.

1. 1.a. Let cT ∈ (0, +∞) and compute ŴP W D ∈ {0, 1}N2 with entries:

Ŵ P W D
ij = 1

{
(yi − yj)2 ≤ cT

}
, i = 1, ..., N, j = 1, ..., N. (2.2)

1.b. Set ĜP W D = |{ŴP W D
1,. , ..., ŴP W D

N,. }| and pick (ĝP W D
1 , ..., ĝP W D

N ) ∈ {1, ..., N}ĜP W D

satisfying constraints:[
ĝP W D

i = ĝP W D
j ⇐⇒ ŴP W D

i,. = ŴP W D
j,.

]
, i = 1, ..., N, j = 1, ..., N.

2. Compute α̂P W D
1 , ..., α̂P W D

ĜP W D
from:

(α̂P W D
1 , ..., α̂P W D

ĜP W D) = argmin
(α1,...,α

ĜP W D )∈AĜP W D

N∑
i=1

T∑
t=1

(
yit − αĝP W D

i

)2
. (2.3)
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The PWD estimator involves two steps. The “assignment step” (1.) decomposes
into a “testing substep” (1.a.), where the squared distance between time-averaged
outcomes for each pair of units is compared to the user-specified threshold cT in
order to determine whether or not such units should be assigned an edge in the
estimated adjency matrix; and a “grouping substep” (1.b.), where units with the same
neighboors are grouped together. It is easy to see that the procedure always yields a
partition of {1, ..., N} into ĜP W D ∈ {1, ..., N} non-empty groups.8 In the “estimation
step” (2.), estimates for the group-specific effects are obtained by running a pooled
OLS regression on the predicted group dummies. We point out that no optimization
is needed as problem (2.3) admits a simple closed form solution.

2.1.3 Asymptotic Properties

We characterize the asymptotic properties of the PWD estimator as N and T tend
to infinity in model (2.1). Consider the following assumption.

Assumption 1 Equation (2.1) holds and there exist constants a, b, d1, d2 > 0 and
a sequence α[t] ≤ e−atd1 such that:

(a) For all (i, t) ∈ {1, ..., N} × {1, ..., T}: E(vit) = 0, Pr(|vit| > m) ≤ e1−(m/b)d2 for
all m > 0.

(b) For all (i, j, g, g̃) ∈ {1, ..., N}2 × {1, ..., G0}2 such that g ̸= g̃, almost surely:
|α0

g − α0
g̃
| ≥ cg,̃g > 0. Moreover, {(α0

g − α0
g̃
)(vit − vjt)}t is a strongly mixing

process with mixing coefficients α[t] and E((α0
g − α0

g̃
)(vit − vjt)) = 0.

Assumption 1 provides a set of identication conditions for the group memberships. It
imposes moment and tail conditions on the error term, well-separation of groups and
vanishing (spatial) dependence between products of differences of unobservables over
time. It is akin to Bonhomme and Manresa (2015)’s Assumptions 1(c) and 2(b)-(d),
but otherwise allows for asymptotically negligible groups. Below is our main result.

Proposition 2.1 Let Assumption 1 hold and cT = o(1) such that cT ≳ log(T )/
√

T

as T → ∞. Then, for all δ > 0 and as N and T tend to infinity:

Pr
(

sup
(i,j)∈{1,...,N}2

∣∣∣Ŵ P W D
ij − W 0

ij

∣∣∣ > 0
)

= o(N2T −δ). (2.4)

8The choice of group labels is innocuous since identification may hold only up to group relabeling.
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The following result is a direct consequence of Proposition 2.1.

Corollary 2.2 (Sup-Norm Classification Consistency) Let Proposition 2.1’s As-
sumptions hold, and let N and T tend to infinity such that, for some ν > 0, N/T ν →
0. Then, there exists a permutation σ⋆ : {1, ..., G0} → {1, ..., G0} such that, as N and
T tend to infinity, we have

sup
(i,j)∈{1,...,N}2

∣∣∣Ŵ P W D
ij − W 0

ij

∣∣∣ p→ 0, (2.5)

ĜP W D p→ G0, (2.6)

and
sup

i∈{1,...,N}
|ĝP W D

i − σ⋆(g0
i )| p→ 0. (2.7)

The following assumption is useful to establish limiting distributions.

Assumption 2 For all g ∈ {1, ..., G0}:

(a) plimN→∞
1
N

∑N
i=1 1 {g0

i = g} = πg > 0.

(b)

lim
N→∞

1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
(
1
{
g0

i = g
}
1
{
g0

j = g
}

vitvjtvisvjs

)
= ωg > 0.

(c) As N and T tend to infinity: 1√
NT

∑N
i=1

∑T
t=1 1 {g0

i = g} vit
d→ N (0, ωg).

Assumption 2 is akin to Bonhomme and Manresa (2015)’s Assumptions 2(a) and
3(d)-(e). In particular, Assumption 2(a) rules out asymptotically negligible group.

Corollary 2.3 (Asymptotic Distribution) Let Assumptions 1 and 2 hold, cT =
o(1) with cT ≳ log(T )/

√
T as T → ∞, and let N and T tend to infinity such that,

for some ν > 0, N/T ν → 0. Then, there exists a permutation σ⋆ : {1, ..., G0} →
{1, ..., G0} such that, letting α̂P W D

g := 0 if g > ĜP W D, we have

√
NT (α̂P W D

g − α0
σ⋆(g))

d→ N
(

0,
ωg

π2
g

)
, g = 1, ..., G0, (2.8)

where ωg and πg are defined in Assumption 2.

Consistent plug-in estimates for the asymptotic variances can be easily constructed
under cross-sectional independence and weak time-dependence.
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2.2 Time-Varying Unobserved Heterogeneity

In this section, we generalize our approach to allow for time-varying grouped effects.

2.2.1 Model

Consider the following specialization of model (1.1):9

yit = α0
g0

i t + vit, i = 1, ..., N, t = 1, ..., T. (2.9)

We now let ΓN,T,G := {G} × {1, ..., G}N × AGT and seek to estimate

(G0, g0
1, ..., g0

N , α0
11, ..., α0

1T , ..., α0
G01, ..., α0

G0T ) ∈
∞⋃

G=1
ΓN,T,G.

2.2.2 Tetrad Pairwise Differencing Estimation

From now on, we assume that N ≥ 4. For any set I ⊂ N∗, for all k ∈ N∗, let
Pk(I) := {I ⊂ I : |I| = k} denote the set of subsets of I with cardinal k. For all
tetrad (i, j, k, l) ∈ P4({1, ..., N}), let

SNT (i, j, k, l) := 1
T

T∑
t=1

(yit − yjt)(ykt − ylt).

The tetrad pairwise differencing (TPWD) estimator is obtained from the following
steps.

1. Let cT ∈ (0, +∞) and compute ŴT P W D ∈ {0, 1}N2 with entries:

Ŵ T P W D
ij = 1

{
max

(k,l)∈P2({1,...,N}\{i,j})
|SNT (i, j, k, l)| ≤ cT

}
, i = 1, ..., N, j = 1, ..., N.

(2.10)
Set ĜT P W D = |{ŴT P W D

1,. , ..., ŴT P W D
N,. }| and pick (ĝT P W D

1 , ..., ĝT P W D
N ) ∈ {1, ..., N}ĜT P W D

satisfying constraints:[
ĝT P W D

i = ĝT P W D
j ⇐⇒ ŴT P W D

i,. = ŴT P W D
j,.

]
, i = 1, ..., N, j = 1, ..., N.

9Since α0
g0

i
t

= λ′
i,0ft,0 with λi,0 = (1

{
g0

i = 1
}

, ...,1
{

g0
i = G0})′ and ft,0 = (α0

1t, ..., α0
G0t)′, it is

worth noting model (2.9) is a special case of the class of interactive fixed effects panel data models
considered in Bai (2003), where the number of groups is unknown. Here, we exploit the extreme
sparsity of λi,0 (which belongs to the set of vertices of the unit simplex of RG0) to build an estimator
that does not use any prior information of G0 (e.g., its exact value or an upper bound).
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2. Compute α̂ := (α̂T P W D
11 , ..., α̂T P W D

1T , ..., α̂T P W D
ĜT P W D1

, ..., α̂T P W D
ĜT P W DT

) from:10

α̂ = argmin
α∈AĜT P W DT

N∑
i=1

T∑
t=1

(
yit − αĝT P W D

i t

)2
. (2.11)

The TPWD estimator is based on the intuition that, under weak group-separability
assumptions, the maximum of |SNT (i, j, k, l)| over (k, l) ∈ P2({1, ..., N}\{i, j}) is
likely to be large if and only if i and j do not belong to the same group since it is lower
bounded by |SNT (i, j, k, l)| evaluated at indices (k, l) such that g0

k = g0
i and g0

l = g0
j ,

and such indices exist with probability approaching one under weak assumptions.

2.2.3 Asymptotic Properties

Consider the following assumption.

Assumption 3 Equation (2.9) holds and there exist constants a, b, d1, d2 > 0 and
a sequence α[t] ≤ e−atd1 such that:

(a) For all (i, j, t) ∈ {1, ..., N}2 × {1, ..., T}: E(vit) = E(vitvjt) = 0 and Pr(|vit| >

m) ≤ e1−(m/b)d2 for all m > 0.

(b) For all (g, g̃) ∈ {1, ..., G0}2 such that g ̸= g̃: plimT →∞T −1∑T
t=1(α0

gt − α0
g̃t

)2 =
cg,̃g > 0.

(c) For all (i, j, k, l, g, g̃) ∈ {1, ..., N}4×{1, ..., G0}2 such that g ̸= g̃, {(vit−vjt)(vkt−
vlt)}t, {α0

gt − α0
g̃t

}t, and {(α0
gt − α0

g̃t
)(vit − vjt)}t are strongly mixing processes

with mixing coefficients α[t]. Moreover, E((α0
gt − α0

g̃t
)vit) = 0.

(d) limN→∞ Pr
(
ming∈{1,...,G0}

∑N
i=1 1 {g0

i = g} ≥ 4
)

= 1.

Assumptions 3(a)-(c) are natural extensions of Assumption 1. Assumption 3(d) re-
quires that each group has at least four members with probability approaching one.

Proposition 2.4 Let Assumption 3 hold and cT = o(1) such that cT ≳ log(T )/
√

T

as T → ∞. Then, for all δ > 0 and as N and T tend to infinity:

Pr
(

sup
(i,j)∈{1,...,N}2

∣∣∣Ŵ T P W D
ij − W 0

ij

∣∣∣ > 0
)

= o(1) + o(N4T −δ). (2.12)

10If necessary, re-allocate randomly units from highly populated groups to low populated groups
until the Gram matrix becomes invertible.
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The following result is a direct consequence of Proposition 2.4.

Corollary 2.5 (Sup-Norm Classification Consistency) Let Proposition 2.4’s As-
sumptions hold, and let N and T tend to infinity such that, for some ν > 0, N/T ν →
0. Then there exists a permutation σ⋆ : {1, ..., G0} → {1, ..., G0} such that, as N and
T tend to infinity, we have

sup
(i,j)∈{1,...,N}2

∣∣∣Ŵ T P W D
ij − W 0

ij

∣∣∣ p→ 0, (2.13)

ĜT P W D p→ G0, (2.14)

and
sup

i∈{1,...,N}
|ĝT P W D

i − σ⋆(g0
i )| p→ 0. (2.15)

The following assumption is useful to establish limiting distributions.

Assumption 4 For all (g, t) ∈ {1, ..., G0} × {1, ..., T}:

(a) plimN→∞
1
N

∑N
i=1 1 {g0

i = g} = πg > 0.

(b) limN→∞
1
N

∑N
i=1

∑N
j=1 E

(
1 {g0

i = g}1
{
g0

j = g
}

vitvjt

)
= ωgt > 0.

(c) As N and T tend to infinity: 1√
N

∑N
i=1 1 {g0

i = g} vit
d→ N (0, ωgt).

Corollary 2.6 (Asymptotic Distribution) Let Assumptions 3 and 4 hold, cT =
o(1) such that cT ≳ log(T )/

√
T as T → ∞, and let N and T tend to infinity such

that, for some ν > 0, N/T ν → 0. Then, there exists a permutation σ⋆ : {1, ..., G0} →
{1, ..., G0} such that, letting α̂T P W D

gt := 0 if g > ĜT P W D, we have, for all t,

√
N(α̂T P W D

gt − α0
σ⋆(g)t)

d→ N
(

0,
ωgt

π2
g

)
, g = 1, ..., G0, (2.16)

where ωgt and πg are defined in Assumption 4.

3 Including Covariates

In this section, we show how our approach easily extends to models with covariates.
We propose two-step estimators based on a preliminary estimate for θ0. The 2PWD
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(resp. 2TPWD) estimator is obtained by applying the PWD (resp. TPWD) estimator
to the residuals yit − x′

itθ̂
1 obtained from a preliminary

√
T -consistent estimate θ̂1 for

θ0, and running a pooled OLS regression of yit on xit and the (interactions of time
and) estimated group dummies. From now on, we assume that eq. (1.1) holds.

Assumption 5

(a) ||θ̂1 − θ0|| = Op(T −1/2).

(b) There exists a constant M > 0 such that, as N, T tend to infinity:

sup
i∈{1,...,N}

Pr
(

1
T

T∑
t=1

||xit|| ≥ M

)
= o(T −δ) for all δ > 0.

Estimators verifying Assumption 5(a) can be found in, e.g., Wooldridge (2010), Arel-
lano and Bond (1991), and Moon and Weidner (2019). Assumption 5(b) is identical
to Bonhomme and Manresa (2015)’s Assumption 2(e). It holds if covariates have
bounded support or if they satisfy dependence and tail conditions similar to vit (see,
e.g., the discussion made by the authors).

Proposition 3.1 Let Assumption 5 hold and cT = o(1) with cT ≳ log(T )/
√

T as
T → ∞, and let N and T tend to infinity such that, for some ν > 0, N/T ν → 0.

• If α0
gt = α0

g and Assumptions 1(a)-(b) hold, then for all δ > 0 and as N and T

tend to infinity:

Pr
(

sup
(i,j)∈{1,...,N}2

∣∣∣Ŵ 2P W D
ij − W 0

ij

∣∣∣ > 0
)

= o(1). (3.1)

• If Assumptions 3(a)-(d) hold, then for all δ > 0 and as N and T tend to infinity:

Pr
(

sup
(i,j)∈{1,...,N}2

∣∣∣Ŵ 2T P W D
ij − W 0

ij

∣∣∣ > 0
)

= o(1). (3.2)

Results similar to Corollaries 2.2 and 2.5 immediately follow from Proposition 3.1.
The following assumptions are useful to establish limiting distributions and are rem-
iniscent of Bonhomme and Manresa (2015).

Assumption 6 (Time-Invariant Unobserved Heterogeneity)
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(a) For all i,j, and t: E(xjtvit) = 0.

(b) There exist positive definite matrices Σθ and Ωθ such that

Σθ = plim
N,T →∞

1
NT

N∑
i=1

T∑
t=1

(xit − xg0
i
)(xit − xg0

i
)′,

Ωθ = plim
N,T →∞

1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
vitvjs(xit − xg0

i
)(xjs − xg0

j
)′
]

,

where xg :=
(
T
∑N

i=1 1 {g0
i = g}

)−1∑N
i=1

∑T
t=1 1 {g0

i = g} xit.

(c) As N and T tend to infinity: 1√
NT

∑N
i=1

∑T
t=1(xit − xg0

i
)vit

d→ N (0, Ωθ).

Assumption 7 (Time-Varying Unobserved Heterogeneity)

(a) For all i,j, and t: E(xjtvit) = 0.

(b) There exist positive definite matrices Σθ and Ωθ such that

Σθ = plim
N,T →∞

1
NT

N∑
i=1

T∑
t=1

(xit − xg0
i t)(xit − xg0

i t)′,

Ωθ = plim
N,T →∞

1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
vitvjs(xit − xg0

i t)(xjs − xg0
j s)′

]
,

where xgt :=
(∑N

i=1 1 {g0
i = g}

)−1∑N
i=1 1 {g0

i = g} xit.

(c) As N and T tend to infinity: 1√
NT

∑N
i=1

∑T
t=1(xit − xg0

i t)vit
d→ N (0, Ωθ).

Corollary 3.2 (Asymptotic Distribution) Let Assumption 5 hold and cT = o(1)
with cT ≳ log(T )/

√
T as T → ∞, and let N and T tend to infinity such that, for

some ν > 0, N/T ν → 0.

• If α0
gt = α0

g and Assumptions 1(a)-(b), 2 and 6 hold, then there exists a permu-
tation σ⋆ : {1, ..., G0} → {1, ..., G0} such that, letting α̂2P W D

g = 0 if g > Ĝ2P W D,
we have √

NT (θ̂2P W D − θ0) d→ N
(
0, Σ−1

θ ΩθΣ−1
θ

)
, (3.3)

and √
NT (α̂2P W D

g − α0
σ⋆(g))

d→ N
(

0,
ωg

π2
g

)
, g = 1, ..., G0, (3.4)

where Σθ, Ωθ, ωg, and πg are defined in Assumptions 2 and 6.
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• If Assumptions 3(a)-(d), 4 and 7 hold, then there exists a permutation σ⋆ :
{1, ..., G0} → {1, ..., G0} such that, letting α̂2T P W D

g = 0 if g > Ĝ2T P W D, we
have √

NT (θ̂2T P W D − θ0) d→ N
(
0, Σ−1

θ ΩθΣ−1
θ

)
, (3.5)

and, for all t:

√
N(α̂2T P W D

gt − α0
σ⋆(g)t)

d→ N
(

0,
ωgt

π2
g

)
, g = 1, ..., G0, (3.6)

where Σθ, Ωθ, ωgt, and πg are defined in Assumptions 4 and 7.

4 Monte Carlo Simulations

In this section, we investigate (i) the finite sample performance of the PWD estimator
in correctly specified models, and (ii) the finite sample sensitivity to the choice of the
threshold cT .

First, we assess the consistency of the PWD estimator for cT = 2 log(T )/
√

T .11 For
each (G0, N) ∈ {2, 5, 10, 50} × {50, 100, 200, 500} and T ∈ ceil(linspace(

√
N, N, 4)),

we draw 1, 000 Monte Carlo samples generated according to model (2.1), where
(α0

1, ..., α0
G0)′ = linspace(−G0/2, G0/2, G0) and (g0

1, ..., g0
N) = repelem([1 : G0], N/G0)

are deterministic (each group has equal size N/G0), and we consider three DGPs for
the noise random variable vit as summarized in Table 1.

Table 1: Data Generating Processes

DGP Noise
1 vit ∼ N (0, 1) i.i.d. across i and t.
2 vit = 0.5vit−1 + ξit with ξit ∼ N (0, 1) i.i.d. across i and t.
3 σi ∼ U [0.5, 1.5] and vit|σi ∼ N (0, σi) independent across i and i.i.d. across t for a given i.

Tables 2-4 report Monte Carlo averages of the estimated number of groups ĜP W D,
the Hausdorff distance between estimated effects {α̂P W D

1 , ..., α̂P W D
ĜP W D

} and true effects

11We study sensitivity to this choice later.
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{α0
1, ..., α0

G0}, Rand Index (RI), and CPU time. The Rand Index (RI) is the proportion
of correctly predicted pair (true or false) returned by the PWD estimator, i.e.:

RI = TP + TN

TP + TN + FP + FN
,

where

TP ≡ True Positives :=
∑
i<j

1{ĝP W D
i = ĝP W D

j }1{g0
i = g0

j },

TN ≡ True Negatives :=
∑
i<j

1{ĝP W D
i ̸= ĝP W D

j }1{g0
i ̸= g0

j },

FP ≡ False Positives :=
∑
i<j

1{ĝP W D
i = ĝP W D

j }1{g0
i ̸= g0

j },

FN ≡ False Negatives :=
∑
i<j

1{ĝP W D
i ̸= ĝP W D

j }1{g0
i = g0

j }.

Results suggest good finite sample performance, although deteriorating with the de-
gree of time-dependence of the idiosyncratic shocks. In the most favorable case of
independent normal errors (Tables 2 and 4), it is remarkable how perfect or almost
perfect classification is achieved for moderate sample sizes even for a large number of
groups (e.g., for (N, T, G0) = (50, 36, 2) or (N, T, G0) = (500, 500, G0 = 50)).

Second, we investigate finite sample sensitivity of the results to the choice of the
thresholding parameter cT . We consider DGP 1 only, fix N = 120, and let (G0, T ) ∈
{2, 3, 4} × {11, 66, 120}. Figures 2-6 plot Monte Carlo averages of Ĝ, HD, RI, Pre-
cision (P) and Recall (R) rates as functions of c ∈ linspace(0.1, 20, 40) with cT =
c log(T )/

√
T , where each colored line corresponds to σ ∈ {0.25, 0.5, 1}, where σ is the

standard-deviation of the random noise vit. The Recall rate (R) measures the ability
of the PWD estimator to identify pairs that truly belong to the same group. The
Precision rate (P) measures how precise the pairing prediction is: among all predicted
pairs of individuals, what is the proportion of correct ones? Both formally write

R = TP

TP + FN
, P = TP

TP + FP
.

Figure 2 suggests that the larger the T , the larger the range of values for c for which
ĜP W D = G0. The two bumps can be explained by looking at Figures 3-5, which
inform about the grouping composition. By definition of the PWD estimator, low
values of c are necessarily associated with almost perfect precision (see Fig. 4) and
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low recall (see Fig.5), but the former compensates at first the latter, wich justifies the
high Rand Index value (see Fig. 3). Such a high value of RI is not incompatible with
a high ĜP W D; it merely tells that the PWD estimator is so precise (or “conservative”)
that it is not yet able to merge all the similar pairs into G0 groups (i.e., to detect
all similar pairs) but that predicted similar pairs tend to be predicted together. The
recall rate then increases steeply with c until experiencing a sudden drop (whereas
the precision rate remains almost constant), and then increases again. This explains
the first bump in ĜP W D and the fact that the decrease in RI is more tempered: with
finite T , there exists a range for c which is “non-optimal” for high recall. Before the
second bump, the range is optimal as ĜP W D = G0 across all DGPs and the Rand
Index is very close to one. Figures 4 and 5 show that the second bump in ĜP W D is
driven by a simultaneously drop in precision and recall: as c continues to increase,
the hard-thresholding procedure becomes too coarse and the grouping quickly ends
up in a degenerated prediction with a unique group containing all individuals. A
key insight is that the Rand Index never drops too much before the second bump
(because of the good precision rate). Hence, we can be confident that for a large
range of values of c (at least [0.1, 5] if G0 = 2 and [0.1, 10] if G0 = 4), we will estimate
precisely the group-specific effects. This is exactly what the small Hausdorff distances
corresponding to these ranges suggest in Figure 6.

5 Empirical Illustration

In this section, we give a short illustration of the PWD estimator which allows to
visualize the grouping path. We use the balanced subsample of Acemoglu et al.
(2008) which contains the Freedom House Index of democracy for N = 74 countries
(after dropping missing values) observed during T = 7 periods over the time span
1970-2000. We estimate model (2.1) using the PWD estimator for different values
of cT ∈ (0, 2). Figure 1 reports the estimated number of groups and group-specific
effects as a function of the threshold. The top-panel shows that the “regularization
path” for ĜP W D(cT ) is surprisingly smooth and exhibits a general decreasing pattern
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Figure 1: Panel of Countries (Freedom House Democracy
Index)
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from Ĝ(0.01) ≈ 40 to ĜP W D(2) = 1.12 The bottom-panel suggests a convergence
toward ĜP W D = 3 groups before a sudden phase-transition to ĜP W D = 1.

Finally, we investigate the performance of the PWD estimator through a specific
Monte-Carlo simulation calibrated to the application. We consider the same sample
size as in the empirical application: N = 74 and T = 7. The goal is to study the
effective performance in a similar setting. We consider a well-specified case of discrete
(grouped) unobserved heterogeneity. We compute the PWD estimates corresponding
to cT ∈ {0, 8341, 0, 7738, 0, 6733}, which respectively yield ĜP W D ∈ {3, 5, 11}. For
a given number of estimated groups, we draw 1, 000 Monte Carlo samples under a
data generating process following model (2.1), where the parameters α0

g and g0
i are

fixed to their estimated PWD values. The error terms are generated as i.i.d. normal
draws across units and time periods, with variance equal to the mean of squared

12The exact same pattern is observed when using the TPWD estimator.
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PWD residuals. Figures 7-12 plot Monte Carlo averages of the PWD estimator of the
number of groups, probability to identifiy the correct number of groups, HD between
estimated/true group effects, RI, R, and P as a function of cT . As expected from
the empirical application, the predicted number of group is a perfectly continuous
function of the threshold parameter and the Hausdorff distance remains moderately
low given the scale of the estimated effects.

6 Conclusion

Grouped fixed effects models are plagued with an underlying NP-hard combinatorial
problem, rendering estimation and inference difficult. In this paper, we propose a
novel constructive identification argument for all the model parameters including the
number of groups. The corresponding estimation methods have polynomial computa-
tional cost and are straightforward to implement (only basic arithmetic operations are
required). They are based on thresholding suitable pairwise differencing transforma-
tion of the regression equation. Mild conditions are given under which our estimators
are uniformly consistent for the underlying grouping structure and asymptotically
normal as both dimensions diverge jointly, where the time-dimension can grow much
more slowly than the cross-sectional dimension. Monte Carlo simulations suggest
good finite sample performance but also leave many interesting questions unanswered.
First, could the approach be fruitful to build a test for the grouping assumption? Sec-
ond, how do the new estimators compare to existing methods requiring the number
of groups to be known or when covariates are included? We leave these questions for
further research.
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A Appendix

A.1 Proof of Proposition 2.1

Let δ > 0 and define Z1NT (i, j) = Ŵ P W D
ij (1 − W 0

ij) and Z2NT (i, j) = (1 − Ŵ P W D
ij )W 0

ij.
By the union bound,

Pr
(

sup
(i,j)∈{1,...,N}2

|Ŵ P W D
ij − W 0

ij| > 0
)

≤
∑

(i,j)∈{1,...,N}2

Pr
(
Ŵ P W D

ij ̸= W 0
ij

)
=

∑
(i,j)∈{1,...,N}2

Pr (Z1NT (i, j) = 1) + Pr (Z2NT (i, j) = 1) . (A.1)

We show below that, as N and T tend to infinity,

sup
(i,j)∈{1,...,N}2

Pr(Z1NT (i, j) = 1) = o(T −δ), (A.2)

and

sup
(i,j)∈{1,...,N}2

Pr (Z2NT (i, j) = 1) = o(T −δ). (A.3)

The result follows by combining (A.1)-(A.3).

Step 1: (A.2) holds. Let (i, j) ∈ {1, ..., N2}. If G0 = 1, almost surely Z1NT (i, j) = 0.
Assume without loss that G0 ≥ 2. By definition of Ŵ P W D

ij and W 0
ij, we have

Z1NT (i, j) =
∑

(g,̃g)∈{1,...,G0}2

g ̸=g̃

1
{
g0

i = g
}
1
{
g0

j = g̃
}
1
{
(yi − yj)2 ≤ cT

}

≤
∑

(g,̃g)∈{1,...,G0}2

g ̸=g̃

1
{
g0

i = g
}
1
{
g0

j = g̃
}
1

{
T∑

t=1
(α0

g − α0
g̃)(vit − vjt) ≤ −T

2 (c2
g,̃g − cT )

}

≤ max
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1

{
T∑

t=1
(α0

g − α0
g̃)(vit − vjt) ≤ −T

2 (c2
g,̃g − cT )

}
,

where the first inequality is obtained by developing the square and using Assump-
tion 1(b), and the second inequality follows because there is at most a unique (g, g̃) ∈
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{1, ..., G0}2 such that 1 {g0
i = g}1

{
g0

j = g̃
}

= 1. By the union bound,

Pr(Z1NT (i, j) = 1) ≤
∑

(g,̃g)∈{1,...,G0}2

g ̸=g̃

Pr
(

T∑
t=1

(α0
g − α0

g̃)(vit − vjt) ≤ −T

2 (c2
g,̃g − cT )

)
.

(A.4)

Let (g, g̃) ∈ {1, ..., G0}2, g ̸= g̃. For T sufficiently large, cT ≤ ming ̸=g̃ c2
g,̃g

/2. Hence,

Pr
(

T∑
t=1

(α0
g − α0

g̃)(vit − vjt) ≤ −T

2 (c2
g,̃g − cT )

)

≤ Pr
 1

T

T∑
t=1

(α0
g − α0

g̃)(vit − vjt) ≤ −
c2

g,̃g

4

 . (A.5)

By Assumption 1(b), the process {(α0
g −α0

g̃
)(vit −vjt)}t has zero mean and is strongly

mixing with faster-than-polynomial decay rate. Moreover, for all i, t, and m > 0,

Pr
(
|(α0

g − α0
g̃)(vit − vjt)| > m

)
≤ Pr

(
|vit − vjt| >

m

2 supα∈A |α|

)
,

so {(α0
g − α0

g̃
)(vit − vjt)}t also satisfies the tail condition of Assumption 1(a), albeit

with a different constant b̃ > 0 instead of b > 0. Applying Lemma B.5 in Bonhomme
and Manresa (2015) with zt = (α0

g − α0
g̃
)(vit − vjt) and taking z = c2

g,̃g
/4 yields

Pr
 1

T

T∑
t=1

(α0
g − α0

g̃)(vit − vjt) ≤ −
c2

g,̃g

4

 = o(T −δ). (A.6)

Note that the above upper bound on the probability does not depend on i, j, g, and
g̃. Combining (A.4)-(A.6) and taking the supremum over (i, j) ∈ {1, ..., N}2 yields

sup
(i,j)∈{1,...,N}2

Pr(Z1NT (i, j) = 1) ≤ G0(G0 − 1)o(T −δ) = o(T −δ).

i.e., (A.2) holds.

Step 2: (A.3) holds. Similarly, we have

Z2NT (i, j) =
G0∑
g=1

1
{
g0

i = g
}
1
{
g0

j = g
}

(1 − Ŵ P W D
ij )

≤ 1

{∣∣∣∣∣ 1T
T∑

t=1
(vit − vjt)

∣∣∣∣∣ >
√

cT

}
. (A.7)
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A close inspection of the proof of Lemma B.5 in Bonhomme and Manresa (2015)
reveals that, by taking z = √

cT and because cT ≳ log(T )/T 1/2,

Pr
(∣∣∣∣∣ 1T

T∑
t=1

(vit − vjt)
∣∣∣∣∣ ≥

√
cT

)
≤ 4

(
1 + log(T )

C1

)−(1/2)T 1/2

+ C2

√√√√ T 1/2

log(T ) exp

−C3

T 1/2

√
C4

log(T )
T 1/2

C5


= o(T −δ),

where C1, C2, C3, C4, and C5 are positive constants that do not depend on i and j.
Thus, (A.3) holds.
The proof of Proposition 2.1 is complete.

A.2 Proof of Corollary 2.2

Let δ > 2ν. Then, eq. (2.5) follows from an application of Proposition 2.1. Next,

Pr(ĜP W D ̸= G0) ≤ Pr
(

sup
(i,j)∈{1,...,N}2

|Ŵ P W D
ij − W 0

ij| > 0
)

= o(1),

which proves (2.6). Define the probability events E1NT = {∀(i, j) ∈ {1, ..., N}2 :
Ŵ P W D

ij = W 0
ij} and E2NT = {ĜP W D = G0}. Then, there must exist a permutation

σ⋆ : {1, ..., G0} → {1, ..., G0} such that, on E1NT ∩E2NT , for all i ∈ {1, ..., N}, ĝP W D
i =

σ⋆(g0
i ). Given (2.5) and (2.6), deduce that

Pr
(

sup
i∈{1,...,N}

|ĝP W D
i − σ⋆(g0

i )| > 0
)

≤ Pr (Ec
1NT ∪ Ec

2NT ) ≤ Pr (Ec
1NT ) + Pr (Ec

2NT ) = o(1),

which proves (2.7).

A.3 Proof of Corollary 2.3

Let (α̃1, ..., α̃G0)′ ∈ RG0 denote the infeasible “oracle” estimates obtained from the
pooled OLS regression of yit on 1 {g0

i = 1} , ...,1 {g0
i = G0}. It can be checked that

√
NT (α̃g − α0

g) =
1√
NT

∑N
i=1 1 {g0

i = g}∑T
t=1 vit

1
N

∑N
i=1 1 {g0

i = g}
, g = 1, ..., G0.
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Under Assumption 2, we have

√
NT (α̃g − α0

g) d→ N
(

0,
ωg

π2
g

)
, g = 1, ..., G0.

By Corollary 2.2, there exists a permutation σ⋆ : {1, ..., G0} → {1, ..., G0} such that

Pr(α̂P W D
g ̸= α̃σ⋆(g)) ≤ Pr(ĜP W D ̸= G0) + Pr

(
sup

i∈{1,...,N}
|ĝP W D

i − σ⋆(g0
i )| > 0

)
= o(1).

The result follows as
∣∣∣Pr

(√
NT (α̂P W D

g − α0
σ⋆(g)) ≤ c

)
− Pr

(√
NT (α̃σ⋆(g) − α0

σ⋆(g)) ≤ c
)∣∣∣

≤
∣∣∣Pr

(√
NT (α̂P W D

g − α0
σ⋆(g)) ≤ c,

√
NT (α̃σ⋆(g) − α0

σ⋆(g)) > c
)∣∣∣

+
∣∣∣Pr

(√
NT (α̂P W D

g − α0
σ⋆(g)) > c,

√
NT (α̃σ⋆(g) − α0

σ⋆(g)) ≤ c
)∣∣∣

≤ Pr(α̂P W D
g ̸= α̃σ⋆(g)) + Pr(α̂P W D

g ̸= α̃σ⋆(g))

for any c.

A.4 Proof of Proposition 2.4

Let δ > 0, Z1NT (i, j) = Ŵ T P W D
ij (1 − W 0

ij), Z2NT (i, j) = (1 − Ŵ T P W D
ij )W 0

ij, and define
the probability event EN = {ming∈{1,...,G0}

∑N
i=1 1 {g0

i = g} ≥ 4}. By standard proba-
bility algebra and similar arguments as the begining of the proof of Proposition 2.1:

Pr
(

sup
(i,j)∈{1,...,N}2

|Ŵ T P W D
ij − W 0

ij| > 0
)

≤ Pr (Ec
N) +

∑
(i,j)∈{1,...,N}2

Pr (Z1NT (i, j) = 1, EN) + Pr (Z2NT (i, j) = 1, EN) . (A.8)

Since Assumption 3(d) ensures limN→∞ Pr (Ec
N) = 0, the rest of the proof consists in

proving that (A.2) and (A.3) (with o(N2T −δ) in place of o(T −δ)) hold under the new
definition of Z1NT (i, j) and Z2NT (i, j) and intersecting each probability event with
EN (we call them (A.2)’ and (A.3)’).

Step 1: (A.2)’ holds. For all (i, j) ∈ P2({1, ..., N}), let (k∗(i, j, g0
i ), l∗(i, j, g0

j )) ∈
P2({1, ..., N}\{i, j}) such that, on EN , g0

k∗(i,j,g0
i ) = g0

i and g0
l∗(i,j,g0

j ) = g0
j . Let (i, j) ∈
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{1, ..., N}2. Since almost surely Z1NT (i, j) = 0 if G0 = 1, assume without loss that
G0 ≥ 2. Similar reasoning as Step 1 in Section A.1 yields that, on EN , we have

Z1NT (i, j) ≤ max
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1
{
g0

i = g
}
1
{
g0

j = g̃
}

× 1

{
max

(k,l)∈P2({1,...,N}\{i,j})

∣∣∣∣ 1T
T∑

t=1
(α0

gt − α0
g̃t)(α

0
g0

k
t − α0

g0
l
t)

+ 1
T

T∑
t=1

(α0
gt − α0

g̃t)(vkt − vlt) + 1
T

T∑
t=1

(α0
g0

k
t − α0

g0
l
t)(vit − vjt)

+ 1
T

T∑
t=1

(vit − vjt)(vkt − vlt)
∣∣∣∣ ≤ cT

}

≤ max
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1
{
g0

i = g
}
1
{
g0

j = g̃
}

× 1

{∣∣∣∣ 1T
T∑

t=1
(α0

gt − α0
g̃t)(α

0
g0

k∗(i,j,g0
i

)
t − α0

g0
l∗(i,j,g0

j
)
t)

+ 1
T

T∑
t=1

(α0
gt − α0

g̃t)(vk∗(i,j,g0
i )t − vl∗(i,j,g0

j )t) + 1
T

T∑
t=1

(α0
g0

k∗(i,j,g0
i

)
t − α0

g0
l∗(i,j,g0

j
)
t)(vit − vjt)

+ 1
T

T∑
t=1

(vit − vjt)(vk∗(i,j,g0
i )t − vl∗(i,j,g0

j )t)
∣∣∣∣ ≤ cT

}
.

where the second inequality is by definition of the max and because (k∗(i, j, g0
i ), l∗(i, j, g0

j )) ∈
P2({1, ..., N}\{i, j}). Because 1 {|a| ≤ b} ≤ 1 {a ≤ b} for any (a, b) ∈ R × R∗ and
using that g0

k∗(i,j,g0
i ) = g0

i and g0
l∗(i,j,g0

j ) = g0
j , we have

Z1NT (i, j) ≤ max
(g,̃g)∈{1,...,G0}2

g ̸=g̃

1
{
g0

i = g
}
1
{
g0

j = g̃
}
1

{
1
T

T∑
t=1

(α0
gt − α0

g̃t)
2

+ 1
T

T∑
t=1

(α0
gt − α0

g̃t)(vit − vjt + vk∗(i,j,g)t − vl∗(i,j,̃g)t)

+ 1
T

T∑
t=1

(vit − vjt)(vk∗(i,j,g)t − vl∗(i,j,̃g)t) ≤ cT

}
.
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By the union bound,

Pr(Z1NT (i, j) = 1, EN)

≤
∑

(g,̃g)∈{1,...,G0}2

g ̸=g̃

[
Pr
(

1
T

T∑
t=1

(α0
gt − α0

g̃t)
2 ≤

cg,̃g

2

)

+ Pr
(

T∑
t=1

(α0
gt − α0

g̃t)(vit − vjt) ≤ −T

6

(cg,̃g

2 − cT

))

+ Pr
(

T∑
t=1

(α0
gt − α0

g̃t)(vk∗(i,j,g)t − vl∗(i,j,̃g)t) ≤ −T

6

(cg,̃g

2 − cT

))

+ Pr
(

T∑
t=1

(vit − vjt)(vk∗(i,j,g)t − vl∗(i,j,̃g)t) ≤ −T

6

(cg,̃g

2 − cT

)) ]
. (A.9)

Focus on the first term in (A.9). By Assumption 3(b), we have limT →∞
1
T

∑T
t=1 E[(α0

gt−
α0

g̃t
)2] = cg,̃g. So for T large enough, we have

1
T

T∑
t=1

E[(α0
gt − α0

g̃t)
2] ≥

2cg,̃g

3 .

Applying Lemma B.5 in Bonhomme and Manresa (2015) to zt = (α0
gt−α0

g̃t
)2−E[(α0

gt−
α0

g̃t
)2], which satisfies appropriate mixing and tail conditions by Assumption 3(a) and

(c), and taking z = cg,̃g/6 yields, as T tends to infinity,

Pr
(

1
T

T∑
t=1

(α0
gt − α0

g̃t)
2 ≤

cg,̃g

2

)
= o(T −δ), (A.10)

uniformly over g and g̃. Now, focus on the second term in (A.9). For T sufficiently
large, we have cT ≤ cg,̃g/4. Hence,

Pr
(

T∑
t=1

(α0
gt − α0

g̃t)(vit − vjt) ≤ −T

6

(cg,̃g

2 − cT

))

≤ Pr
(

1
T

T∑
t=1

(α0
gt − α0

g̃t)(vit − vjt) ≤ −
cg,̃g

24

)
.

By Assumption 3(c), the process {(α0
g̃t

−α0
gt)(vit−vjt)}t has zero mean, and is strongly

mixing with faster-than-polynomial decay rate. Moreover, for all i, t and m > 0,

Pr
(
|(α0

gt − α0
g̃t)(vit − vjt)| > m

)
≤ Pr

(
|vit − vjt| >

m

2 supαt∈A |αt|

)
,
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so {(α0
gt − α0

g̃t
)(vit − vjt)}t also satisfies the tail condition of Assumption 3(a), albeit

with a different constant b̃ > 0 instead of b > 0. Lastly, applying Lemma B.5 from
Bonhomme and Manresa (2015) again with zt = (α0

gt − α0
g̃t

)(vit − vjt) and taking
z = cg,̃g/24 yields

Pr
(

1
T

T∑
t=1

(α0
gt − α0

g̃t)(vit − vjt) ≤ −
cg,̃g

24

)
= o(T −δ). (A.11)

Note that the above upper bound does not depend on i, j, and g, g̃. Hence, we deduce

Pr
(

T∑
t=1

(α0
gt − α0

g̃t)(vit − vjt) ≤ −T

6

(cg,̃g

2 − cT

))
= o(T −δ), (A.12)

uniformly over i, j, g and g̃. Similarly,

Pr
(

1
T

T∑
t=1

(α0
gt − α0

g̃t)(vk∗(i,j,g)t − vl∗(i,j,̃g)t) ≤ −T

6

(cg,̃g

2 − cT

))
= o(T −δ), (A.13)

uniformly over i, j, g, and g̃. Similar arguments can be used to show that

Pr
(

1
T

T∑
t=1

(vit − vjt)(vk∗(i,j,g)t − vl∗(i,j,̃g)t) ≤ −T

6

(cg,̃g

2 − cT

))
= o(T −δ). (A.14)

uniformly over i, j. Combining results (A.9)-(A.14), and taking supremum over all
(i, j) ∈ {1, ..., N} yields

sup
(i,j)∈{1,...,N}2

Pr(Z1NT (i, j) = 1, EN)

≤ G0(G0 − 1)[o(T −δ) + o(T −δ) + o(T −δ) + o(T −δ)]

= o(T −δ),

i.e., (A.2)’ holds.

Step 2: (A.3)’ holds. We have

Z2NT (i, j) ≤ 1

{
max

(k,l)∈P2({1,...,N}\{i,j})

∣∣∣∣ 1T
T∑

t=1
(vit − vjt)(vkt − vlt)

+ 1
T

T∑
t=1

(vit − vjt)(α0
g0

k
t − α0

g0
l
t)
∣∣∣∣ > cT

}
.
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By the union bound and the triangle inequality, we have

Pr (Z2NT (i, j) = 1, EN) ≤
(

N − 2
2

)
sup

(k,l)∈{1,...,N}2
Pr
(∣∣∣∣∣ 1T

T∑
t=1

(vit − vjt)(vkt − vlt)
∣∣∣∣∣

+
∣∣∣∣∣ 1T

T∑
t=1

(vit − vjt)(α0
g0

k
t − α0

g0
l
t)
∣∣∣∣∣ > cT

)
.

Under the strong mixing and tail conditions given by Assumptions 3(a) and (c), the
upper bound in the expression above can be shown to be o(N2T −δ) uniformly over
i, j by similar arguments as in Step 1 and Section A.1 (Step 2). Hence, (A.3)’ holds
and the proof of Proposition 2.4 is complete.

A.5 Proof of Corollary 2.5

Given Proposition 2.4, the proof is identical to that of Corollary 2.2.

A.6 Proof of Corollary 2.6

Given Corollary 2.5, the proof follows closely the same lines as that of Corollary 2.3
so we omit it here.

A.7 Proof of Proposition 3.1

We only prove the first point since the second follows from similar arguments (the
proof is available upon request). The proof is similar to that of Proposition 2.1, in
that only the additional control on the residual is required. We therefore keep the
same notation for Z1NT (i, j) and Z2NT (i, j) by replacing Ŵ P W D

ij by Ŵ 2P W D
ij . Let

(i, j) ∈ {1, ..., N}2, δ > 0, ϵ > 0, and K > 0 such that Pr
(
||θ̂1 − θ0|| > K/

√
T
)

≤ ϵ.

1. We first show that sup(i,j)∈{1,...,N}2 Pr(Z1NT (i, j) = 1, ||θ̂1−θ0|| ≤ K/
√

T ) = o(T −δ).
Following similar arguments than before (assume without loss G0 ≥ 2), we have

Z1NT (i, j) ≤ max
g ̸=g̃

1

{(
α0

g − α0
g̃

) (
(xi − xj)′(θ0 − θ̂1) + vi − vj

)
≤ −1

2(c2
g,̃g − cT )

}
.
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Letting ā = sup{a ∈ A}, the triangle and Cauchy-Schwarz inequalities yield

(α0
g − α0

g̃)(xi − xj)′(θ0 − θ̂1) ≥ −2ā||θ̂1 − θ0|| ×
(

1
T

T∑
t=1

||xit|| + 1
T

T∑
t=1

||xjt||
)

≥ −2āK√
T

×
(

1
T

T∑
t=1

||xit|| + 1
T

T∑
t=1

||xjt||
)

.

For T sufficently large, 4āKM/
√

T ≤ ming ̸=g̃ c2
g,̃g

/4 and cT ≤ ming ̸=g̃ c2
g,̃g

/4. Hence,
by decompositing the probability event on the left-hand side and applying the union
bound, we obtain,

Pr
(
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√
T
)

≤
∑
g ̸=g̃

Pr
(
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T∑
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)
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[
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(

1
T

T∑
t=1

||xit|| ≥ M

)

+ Pr
(

1
T

T∑
t=1

||xjt|| ≥ M

)]
. (A.15)

Combining (A.6), (A.15), and Assumption 5(b) yields

sup
(i,j)∈{1,...,N}2

Pr
(
Z1NT (i, j) = 1, ||θ̂1 − θ0|| ≤ K/

√
T
)

≤ G0(G0 − 1)[o(T −δ) + o(T −δ) + o(T −δ)]

= o(T −δ). (A.16)

2. Next, we can use similar arguments to obtain, for T sufficiently large,

sup
(i,j)∈{1,...,N}2

Pr
(
Z2NT (i, j) = 1, ||θ̂1 − θ0|| ≤ K/

√
T
)
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[

sup
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)

+2 sup
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Pr
(

1
T

T∑
t=1

||xit|| ≥ M

)]
, (A.17)

for some constant C > 0. Similar arguments than in step 2. in Section A.1 show that

sup
(i,j)∈{1,...,N}2

Pr
(∣∣∣∣∣ 1T

T∑
t=1

(vit − vjt)
∣∣∣∣∣ >

√
cT C

)
= o(T −δ). (A.18)

Combining (A.17)-(A.18), and Assumption 5(b) yields

sup
(i,j)∈{1,...,N}2

Pr
(
Z2NT (i, j) = 1, ||θ̂1 − θ0|| ≤ K/

√
T
)

= o(T −δ). (A.19)
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3. Finally, by the union bound

Pr
(

sup
(i,j)∈{1,...,N}2

|Ŵ 2P W D
ij − W 0

ij| > 0
)

≤ Pr
(
||θ̂1 − θ0|| > K/

√
T
)

+ N(N − 1)
[

sup
(i,j)∈{1,...,N}2

Pr
(
Z1NT (i, j) = 1, ||θ̂1 − θ0|| ≤ K/

√
T
)

+ sup
(i,j)∈{1,...,N}2

Pr
(
Z2NT (i, j) = 1, ||θ̂1 − θ0|| ≤ K/

√
T
)]

= ϵ + o(N2T −δ).

As ϵ was unrestricted, the proof of Proposition 3.1 is complete.

A.8 Proof of Corollary 3.2

Given Proposition 3.1, the proof follows the same lines as that of Corollary 2.3 and
2.6 so we omit it here (see Bonhomme and Manresa (2015)’s Supplemental Material
for details).

A.9 MATLAB Code

Below is some MATLAB code for the PWD and TPWD estimators. Replication
codes for the Monte Carlo simulation and the empirical application can be found at
martinmugnier.github.io.

1 c l a s s d e f pwd_estimators
2

3 methods ( S t a t i c )
4

5 f unc t i on [G, grp_labels , g rp_e f f e c t s ] = pwd(Y, c )
6 % This func t i on r e tu rn s the PWD est imator .
7 % INPUTS: Y : NxT array o f balanced panel data outcome ;
8 % c : s c a l a r th r e sho ld .
9 [N T] = s i z e (Y) ;

10 Ybar = nanmean(Y, 2 ) ;
11 % compute the W matrix
12 W = ( bsxfun (@minus , Ybar , Ybar ’ ) .^2<=c ) ;

29

martinmugnier.github.io


13 % obta in e s t imate s f o r G and group l a b e l s
14 G = s i z e ( unique (W, ’ rows ’ ) , 1 ) ;
15 [ ~ ,~ , grp_labe l s ] = unique (W, ’ rows ’ ) ;
16 % generate group dummies
17 exog = dummyvar( grp_labe l s ) ;
18 exog = repmat ( exog ’ ,T, 1 ) ;
19 exog = reshape ( exog , [ ] ,N∗T) ’ ;
20 endog = reshape (Y’ ,N∗T, 1 ) ;
21 % run pooled OLS and obta in group−s p e c i f i c e f f e c t s

e s t imate s
22 g rp_e f f e c t s = OLS( endog , exog ) ;
23 end
24

25 f unc t i on [G, grp_labels , params ] = tpwd (Y, c )
26 % This func t i on r e tu rn s the TPWD est imator .
27 % INPUTS: Y : NxT array o f balanced panel data outcome ;
28 % c : s c a l a r th r e sho ld .
29 [N T] = s i z e (Y) ;
30 s = permute (Y−permute (Y, [ 3 2 1 ] ) , [ 1 3 2 ] ) ;
31 S = max( abs (mean( s . ∗ permute ( s , [ 5 4 3 2 1 ] ) , 3 ) ) , [ ] , [ 4 5 ] ) ;
32 % compute the W matrix
33 W = (S<=c ) ;
34 % obta in e s t imate s f o r G and group l a b e l s
35 G = s i z e ( unique (W, ’ rows ’ ) , 1 ) ;
36 [ ~ ,~ , grp_labe l s ] = unique (W, ’ rows ’ ) ;
37 % generate group dummies
38 exog = dummyvar( grp_labe l s ) ;
39 exog = repmat ( exog ’ ,T, 1 ) ;
40 exog = reshape ( exog , [ ] ,N∗T) ’ ;
41 timedum = kron ( ones (N, 1 ) , eye (T) ) ;
42 % take i n t e r a c t i o n s exog x timedum
43 % . . . TBD . . .
44 % merge s i n g l e t o n groups
45 % . . . TBD . . .
46 % run pooled OLS and obta in s t r u c t u r a l parameters
47 endog = reshape (Y’ ,N∗T, 1 ) ;
48 params = OLS( endog , exog ) ;
49 end
50

30



51 end
52 end
53

54 f unc t i on [ theta ] = OLS(Y,X)
55 % This func t i on r e tu rn s the OLS es t imator .
56 % INPUTS:
57 % −−−−−−
58 % Y : n x 1 array ;
59 % X : n x p array .
60 theta = inv (X’ ∗X) ∗X’ ∗Y;
61 end

A.10 Tables and Figures
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Table 2: Consistency Under IID Errors (PWD Estimator)

G0 = 2 G0 = 5 G0 = 10 G0 = 50

N T ĜP W D HD RI CPU time Ĝ HD RI CPU time ĜP W D HD RI CPU time ĜP W D HD RI CPU time

50 8 13.448 0.853 0.689 0.0231 31.569 0.6837 0.8347 0.0245 33.595 0.6025 0.9285 0.0268 41.097 1.0521 0.9918 0.0271

22 3.12 0.2724 0.9679 0.0197 31.078 0.5124 0.8398 0.028 33.978 0.5033 0.9316 0.033 44.195 0.7252 0.9952 0.038

36 2.057 0.0523 0.9987 0.0202 29.031 0.4071 0.8472 0.0351 34.036 0.4676 0.9318 0.0385 43.049 0.6741 0.9943 0.0384

50 2.0 0.0318 1.0 0.0179 25.567 0.3422 0.8598 0.0392 34.006 0.4309 0.9332 0.0388 41.194 0.6594 0.9928 0.0363

100 10 20.265 0.8568 0.6847 0.0356 61.661 0.7014 0.8192 0.0514 66.048 0.6207 0.9167 0.0473 76.09 0.6061 0.9909 0.0468

40 2.067 0.0431 0.9991 0.0365 54.776 0.4204 0.8283 0.1461 65.684 0.468 0.9184 0.159 77.127 0.521 0.9916 0.186

70 2.0 0.0195 1.0 0.0366 36.093 0.3167 0.8603 0.1492 62.926 0.3492 0.9211 0.2321 75.669 0.5423 0.9907 0.2714

100 2.0 0.0164 1.0 0.0464 19.101 0.2653 0.9213 0.1268 53.595 0.2724 0.9283 0.2673 75.805 0.5456 0.9911 0.3696

200 15 20.541 0.7577 0.7738 0.0388 121.746 0.6481 0.8105 0.2366 129.174 0.5911 0.9095 0.2539 142.493 0.518 0.9877 0.2808

77 2.0 0.0129 1.0 0.0331 61.0 0.3285 0.8491 0.4463 119.47 0.3402 0.9122 0.8661 142.23 0.4934 0.9874 1.058

139 2.0 0.0098 1.0 0.0387 13.602 0.2447 0.9704 0.2244 66.249 0.2485 0.934 0.8318 133.374 0.375 0.9892 1.719

200 2.0 0.0082 1.0 0.0377 5.492 0.0657 0.9988 0.1662 26.174 0.2079 0.9774 0.4734 96.023 0.2161 0.9935 1.7135

500 23 17.832 0.6652 0.8941 0.2407 294.97 0.6124 0.8047 1.7975 319.05 0.5614 0.9041 1.9425 338.79 0.5145 0.9837 2.1004

182 2.0 0.0054 1.0 0.2244 9.838 0.2209 0.993 0.5474 80.128 0.2383 0.9483 3.1459 236.88 0.2404 0.9868 9.3569

341 2.0 0.0038 1.0 0.309 5.0 0.0085 1.0 0.5465 10.566 0.0589 0.9997 0.9849 60.138 0.1724 0.9992 4.3177

500 2.0 0.0031 1.0 0.4193 5.0 0.0071 1.0 0.7088 10.0 0.012 1.0 1.2732 50.056 0.039 1.0 5.2066

Note: Results are averaged over 1, 000 Monte Carlo replications. G0 ≡True number of groups; ĜP W D ≡Estimated number of groups; HD≡Hausdorff
Distance between estimated and true group effects; RI≡Rand Index; CPU time≡MATLAB’s cputime.
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Table 3: Consistency Under Weakly Dependent Errors
(PWD Estimator)

G0 = 2 G0 = 5 G0 = 10 G0 = 50

N T ĜP W D HD RI CPU time ĜP W D HD RI CPU time ĜP W D HD RI CPU time ĜP W D HD RI CPU time

50 8 28.595 1.4024 0.5414 0.0216 32.107 1.1536 0.8214 0.0275 33.375 0.9449 0.9176 0.028 35.682 1.3475 0.9855 0.0273

22 17.803 0.9754 0.6238 0.0267 31.736 0.7796 0.832 0.03 33.706 0.6663 0.9254 0.0315 38.623 1.1209 0.9894 0.0325

36 10.578 0.7982 0.7543 0.0246 31.378 0.6548 0.8374 0.039 33.919 0.5848 0.9293 0.0382 39.864 0.9718 0.9912 0.0386

50 6.528 0.6328 0.8646 0.0245 30.584 0.5979 0.8417 0.0412 34.134 0.545 0.9309 0.0418 39.854 0.867 0.9915 0.0368

100 10 54.019 1.4465 0.5244 0.0466 63.822 1.2461 0.8121 0.0525 66.017 1.0834 0.9102 0.0495 69.514 0.9166 0.9864 0.0441

30 17.864 0.8408 0.7239 0.051 61.334 0.6931 0.8205 0.1498 65.385 0.613 0.917 0.1548 74.838 0.6368 0.9904 0.178

70 6.447 0.5802 0.9223 0.0457 55.833 0.5859 0.827 0.2099 65.453 0.5384 0.9187 0.2397 75.422 0.5907 0.9906 0.2736

100 3.413 0.3072 0.9795 0.0419 48.448 0.5243 0.8368 0.2423 63.861 0.504 0.9204 0.3224 75.413 0.5825 0.9907 0.3614

200 15 91.877 1.3407 0.5195 0.1777 125.656 1.1787 0.8074 0.2408 130.224 1.0442 0.9063 0.2491 136.702 0.7222 0.9849 0.2714

77 10.08 0.6585 0.9134 0.1068 106.55 0.6098 0.816 0.7937 127.67 0.5544 0.9102 0.9589 142.40 0.5066 0.9873 1.0767

139 2.965 0.2254 0.9924 0.0463 71.937 0.4896 0.8375 0.9182 115.835 0.4826 0.9131 1.4926 142.416 0.4901 0.9878 1.8468

200 2.166 0.0551 0.999 0.0502 41.683 0.4085 0.8811 0.778 92.895 0.4117 0.92 1.676 136.125 0.4528 0.9889 2.469

500 23 170.186 1.2131 0.5171 1.057 310.33 1.1007 0.8035 1.869 322.65 1.0035 0.9031 1.9837 337.404 0.7414 0.9827 2.0861

182 3.232 0.2498 0.9958 0.2965 122.31 0.4737 0.8396 4.8164 247.13 0.4717 0.9081 9.8664 326.424 0.469 0.9841 13.09

341 2.016 0.0115 1.0 0.3321 22.837 0.3443 0.9669 1.8112 96.738 0.3481 0.9392 6.9564 215.331 0.3505 0.9878 15.6834

500 2.0 0.0063 1.0 0.4076 6.274 0.1528 0.9985 0.8521 30.89 0.2868 0.985 3.3249 108.39 0.2895 0.9949 11.2575

Note: Results are averaged over 1, 000 Monte Carlo replications. G0 ≡True number of groups; ĜP W D ≡Estimated number of groups; HD≡Hausdorff
Distance between estimated and true group effects; RI≡Rand Index; CPU time≡MATLAB’s cputime.
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Table 4: Consistency Under Heteroskedastic Errors
(PWD Estimator)

G0 = 2 G0 = 5 G0 = 10 G0 = 50

N T ĜP W D HD RI CPU time ĜP W D HD RI CPU time ĜP W D HD RI CPU time Ĝ HD RI CPU time

50 8 15.869 0.9211 0.6471 0.0225 31.651 0.7309 0.8332 0.0255 33.744 0.6399 0.9268 0.026 40.022 1.0997 0.9906 0.0275

22 4.841 0.4884 0.9134 0.0224 31.374 0.5593 0.8386 0.0311 34.255 0.5243 0.9313 0.0332 43.216 0.8085 0.9943 0.0365

36 2.257 0.1016 0.9937 0.022 30.082 0.454 0.8442 0.033 34.272 0.4806 0.9316 0.0363 42.551 0.7016 0.9939 0.0443

50 2.006 0.0381 0.9999 0.0185 26.943 0.3792 0.8545 0.0364 34.135 0.4532 0.9328 0.0355 41.12 0.679 0.9928 0.0415

100 10 29.069 0.9689 0.605 0.0456 62.248 0.7981 0.8179 0.0568 65.794 0.7018 0.9153 0.0474 74.017 0.6838 0.9898 0.0549

40 2.344 0.1132 0.9955 0.0457 56.172 0.4677 0.8265 0.1434 65.958 0.4917 0.9182 0.159 76.597 0.5338 0.9915 0.1772

70 2.0 0.0213 1.0 0.0416 39.427 0.3467 0.8523 0.1642 63.817 0.3783 0.9205 0.2393 75.513 0.5473 0.9907 0.2803

100 2.0 0.0177 1.0 0.0402 22.032 0.2861 0.9072 0.1375 55.448 0.2937 0.9267 0.2832 75.832 0.5458 0.9911 0.3649

200 15 35.896 0.8967 0.6458 0.0561 122.235 0.7455 0.8101 0.226 129.324 0.6703 0.9089 0.2543 142.211 0.5459 0.987 0.2748

77 2.0 0.0143 1.0 0.0307 68.329 0.3566 0.8408 0.4835 121.611 0.3689 0.9117 0.9058 142.751 0.4924 0.9874 1.0951

139 2.0 0.0101 1.0 0.0396 16.56 0.2582 0.9591 0.2576 72.042 0.2621 0.9302 0.9223 134.743 0.3999 0.9891 1.8094

200 2.0 0.0084 1.0 0.0454 5.76 0.087 0.9981 0.1657 28.772 0.2154 0.9736 0.5166 99.223 0.2239 0.9931 1.8396

500 33 37.936 0.7906 0.7672 0.3116 298.003 0.6836 0.8046 1.8629 319.607 0.6228 0.904 1.9931 339.888 0.5361 0.9835 2.1764

182 2.0 0.0056 1.0 0.2115 11.672 0.2355 0.9897 0.599 88.894 0.2462 0.9435 3.6233 245.004 0.2504 0.9865 10.57

341 2.0 0.0041 1.0 0.3299 5.0 0.0088 1.0 0.5171 10.966 0.0819 0.9995 0.9751 63.247 0.18 0.9989 4.7129

500 2.0 0.0033 1.0 0.4094 5.0 0.0073 1.0 0.7156 10.0 0.0124 1.0 1.271 50.098 0.0433 1.0 5.4568

Note: Results are averaged over 1, 000 Monte Carlo replications. G0 ≡True number of groups; ĜP W D ≡Estimated number of groups; HD≡Hausdorff
Distance between estimated and true group effects; RI≡Rand Index; CPU time≡MATLAB’s cputime.
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Figure 2: Sensitivity of the Number of Groups Ĝ
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Figure 3: Sensitivity of the Rand Index
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Figure 4: Sensitivity of the Precision Rate
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Figure 5: Sensitivity of the Recall Rate
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Figure 6: Sensitivity of the Hausdorff Distance
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Figure 7: Calibrated Monte Carlo - Average Ĝ
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Figure 8: Calibrated Monte Carlo - Frequency of
1
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Figure 9: Calibrated Monte Carlo - Hausdorff Distance
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Figure 10: Calibrated Monte Carlo - Rand Index
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Figure 11: Calibrated Monte Carlo - Precision Rate
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Figure 12: Calibrated Monte Carlo - Recall Rate
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