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Abstract

We propose a novel External-Instrument SVAR procedure, the Generalised External-
Instrument SVAR, to identify and estimate the impulse response functions, regardless
of the shock being invertible or recoverable. When the shock is recoverable, we also
show how to estimate the unit variance shock and the ‘absolute’ response functions.
When the shock is invertible, the method collapses to the standard External-Instrument
SVAR procedure. We show how to test for recoverability and invertibility. We apply our
techniques to a monetary policy VAR. It turns out that, using standard specifications, the
monetary policy shock is not invertible, but is recoverable. When using our procedure,
results are plausible even in a parsimonious specification, not including financial variables.
Contrary to previous findings, monetary policy has significant and sizeable effects on
prices.
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1 Introduction

Since the seminal contributions of Stock (2008), Mertens and Ravn (2013) and Stock and
Watson (2018), SVAR-IV (or Proxy-SVAR) methods have become a popular approach to
structural macroeconomic analysis. A very partial list of recent noticeable applications
include Stock and Watson (2012), Mertens and Ravn (2014), Gertler and Karadi (2015),
Mertens and Montiel-Olea (2018), Paul (2020) and Miranda-Agrippino and Ricco (2021). In
this paper we refer to the method proposed in Mertens and Ravn (2013) as the ‘standard
External-Instrument SVAR’.

A severe limitation of the method is that it requires invertibility (Stock and Watson, 2018,
Miranda-Agrippino and Ricco, forthcoming).1 A shock is invertible if it is a linear combination
of the present and past values of the VAR variables, or, equivalently, a contemporaneous
linear combination of the VAR residuals. Invertibility is a demanding property, unlikely to be
satisfied in the presence of ‘news’ technology shocks (Forni et al., 2014), forward guidance
(Ramey, 2016) or fiscal foresight (Mertens and Ravn, 2010, Ramey, 2011, Leeper et al., 2013)
and necessarily failing for the so-called ‘noise’ shocks (Blanchard et al., 2013, Forni et al.,
2017). The problem is that current and past values of macroeconomic variables do not convey
enough information to recover the shock. Here we show that indeed invertibility does not
hold for a few standard monetary-policy VAR specifications.

Plagborg-Møller and Wolf (2021) have proposed to overcome this limitation by adopting
an ‘Internal-Instrument SVAR’ approach (see also Ramey, 2016). The approach consists of a
standard Cholesky identification where the instrument enters the VAR as the first variable,
and the IRFs to the first shock are the IRFs of interest. With this procedure, the impulse
response functions are consistently estimated even in absence of invertibility. Other approaches
which are valid under noninvertibilty are the LP-IV (discussed in Stock and Watson, 2018),
based on Jordà (2005)’s Local Projections, and the VARX where the proxy plays the role of
the exogenous variable (Paul, 2020). With these alternative methods, however, an important
flexibility of the original External-Instrument approach is lost: the possibility of having
different time spans for the model variables and the proxy, a property which is very useful
when the time span of the proxy is relatively short, as it is often in practice.

The main methodological contribution of this paper is to generalise the External-Instrument
SVAR approach to the case of noninvertibility. We refer to our proposed method as the
Generalised External-Instrument SVAR. We show that all types of analysis that can be
conducted with the above alternative methods can be also conducted, under similar validity

1Stock and Watson (2018) provide validity conditions under global invertibility. Miranda-Agrippino and
Ricco (forthcoming) show the method can be generalised to the case of partial invertibility, at the cost of
reinforcing the validity conditions for the instrument.
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conditions, with our approach. Furthermore, as compared to the Internal-Instrument SVAR
approach, our method maintains the full flexibility of the original External-Instrument
methodology. First, the important time-span flexibility cited above is retained. Second,
the conditional exogeneity of the instrument can be ensured by using an information set
different from the VAR information set. Third, by keeping the instrument out of the VAR,
the dynamics of the instrument are not constrained by those of the VAR variables.

Our proposed method is the following. Instead of regressing the VAR residuals onto the
current proxy only (the standard External-Instrument method), we regress the VAR residuals
onto the current proxy and its lags. The impulse response functions are then estimated by
combining the coefficients of this regression with the reduced-form impulse response functions
obtained from the VAR. Moreover, we show how to implement, within our setting, the
upper and lower bounds for the relative IRFs and the variance decomposition proposed by
Plagborg-Møller and Wolf (2022).

While the ‘relative’ impulse-response functions can be estimated independently of the
shock of interest being invertible or recoverable, the ‘absolute’ response functions and the
structural shock itself cannot, unless the shock is recoverable. Recoverability (Chahrour and
Jurado, 2021) is much less demanding than invertibility.2 A shock is recoverable if it is a linear
combination of the present, past and future values of the VAR variables, or, equivalently, it is
a linear combination of the present and future values of the VAR residuals.

Here we show how to test for recoverability and estimate the structural shock of interest
when it is recoverable. We regress the instrument onto the present and future values of
the VAR residuals. If the shock is recoverable, the fitted value is a consistent estimate of
the shock and therefore must be serially uncorrelated. Following a valuable suggestion of
Plagborg-Møller and Wolf (2022), we then propose to test for recoverability by testing for
serial uncorrelation of such projection. If the test does not reject the null, the above fitted
value provides an estimate of the structural shock. Moreover, we show how to estimate the
corresponding ‘absolute’ impulse-response functions.

Having an estimate of the shock, historical decomposition can be performed as usual.
Standard variance decomposition is downward biased at short horizons when the model is not
globally invertible. However, we can get an unbiased variance decomposition by looking at
the integrals of the spectral densities over specific frequency bands, as suggested in Forni et
al. (2019).3

The regression of the proxy onto the present and future values of the VAR residuals
2Consider that, if the number of shocks is equal to the number of variables, recoverability is always fulfilled

for all shocks, whereas invertibility requires special conditions on the impulse-response functions (see e.g.
Lippi and Reichlin, 1993, Lippi and Reichlin, 1994 and Fernandez-Villaverde et al., 2007).

3The method is the same used, for different purposes, in Angeletos et al. (2020).
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also allows us to test for invertibility. For, under the invertibility assumption, the shock is
a linear combination of current VAR residuals only. Hence a simple F -test for the null of
zero coefficients for future residuals tells us whether the shock is invertible or not. Both
the recoverability test and the invertibility test provide a valuable guidance for the choice
of the VAR variables. If the null of invertibility is not rejected, our proposed procedure
collapses to the standard External-Instrument SVAR procedure. Stock and Watson (2018)
and Plagborg-Møller and Wolf (2022) also propose invertibility tests based on the proxy. The
former requires estimation of LP-IV. The latter consists in testing whether the proxy Granger
causes the VAR variables. In our setting, the F -test on the joint significance of future VAR
residuals seems more appropriate than the Granger causality test, being a natural by-product
of the estimation procedure.

A few Monte Carlo exercises validate our proposed estimation and testing method in small
samples. Two of these simulations show that our procedure has an excellent performance in
estimating the structural impulse response functions in comparison to the Internal-Instrument
SVAR.

From a theoretical point of view, our contribution is twofold. On the one hand, we have
representation results relating the structural impulse response functions and shocks to the
reduced form VAR coefficients and residuals. Such results do not involve the instrument.
They can be regarded as a generalisation of Lippi and Reichlin (1994) to the important case
in which there are more shocks than variables. On the other hand, we present identification
results relating the structural impulse response functions (and the shock of interest) to the
proxy. For these results, we are closely connected to Plagborg-Møller and Wolf (2022). The
basic difference between our formulas and the ones in that paper is that, in order to develop
our approach, we write such relations in terms of the reduced form VAR coefficients and
residuals, using the representation results cited above.

In the empirical application, we study the effects of US monetary policy using the proxy
of Gertler and Karadi (2015). Such instrument is based on surprises in federal fund futures
with three-month maturity, so that it is likely to capture both conventional monetary policy
shocks and shocks to forward guidance about the path rate at short horizons. This news
component might induce noninvertibility, thus providing a strong motivation for our analysis.

Our main findings are the following. First, in standard VAR specifications the monetary
policy shock turns out to be noninvertible according to our test. This is true even for
specifications including the excess bond premium or other financial variables. Hence, the
results obtained so far with the standard External-Instrument SVAR approach should be
taken with caution.

Second, when using our External-Instrument method, a contractionary shock reduces
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inflation and output consistently across different VAR specifications and independently of the
inclusion of financial variables. By contrast, when using the standard approach, results are
dramatically different across VAR specifications, with large price and real activity puzzles
emerging when the financial variables are not included.

Finally, the monetary policy shock is recoverable, so that we can perform variance
decomposition. The variance decomposition shows that the contribution of the monetary
policy shock on both output and prices is sizeable and larger than previously reported. This
is a noticeable result, in that it suggests that monetary policy can be effective in controlling
prices, contrary to what found in most of the existing literature.

The remainder of the paper is organised as follows. Sections 2 present our structural MA
model and our representation results. In Section 3 we present our identification results and
our proposed estimation and testing procedure, which is summarised in Section 4. Section
5 collects our Monte Carlo exercises. Section 6 presents our empirical application. The
last section provides some conclusions. The Online Appendix provides the proofs of all
propositions, examples, additional simulations and a few robustness checks for the empirical
application.

2 Representation theory

In this section we introduce our theoretical framework and study the relation between the
structural representation and the VAR representation when the structural shock of interest is
not recoverable, recoverable but not invertible, and invertible.

2.1 The model

Let us start from our assumptions about the structural macroeconomic model and the VAR
representation.

Assumption 1. (Structural MA representation) The observable macroeconomic variables in
the n-dimensional vector yt (possibly after suitable transformations) have the representation

yt = B(L)ut, (1)

where (i) B(L) = B0 + B1L + B2L
2 + · · · is an n × q matrix of rational impulse-response

functions in the lag operator L; (ii) n ≤ q and B(L) has maximum rank n; (iii) ut is a
q-dimensional white noise vector including the structural shocks, whose variance covariance
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matrix is Iq.4

The above model is sometimes referred to as the Slutsky-Frisch representation of the
macro economy. It can be thought of as resulting from the linearisation of a DSGE model
and can easily be derived from its state-space representation. Notice that we do not assume
that the number of shocks is equal to the number of variables, so that the matrix B(L) is
not necessarily square. However, we assume that the number of variables cannot be larger
than the number of shocks (n ≤ q). This assumption can be justified by recognising that the
variables are observed with error and such errors are allowed to enter the vector ut together
with the structural shocks. Since the entries of B(L) are rational functions, the assumption
that B(L) has maximum rank n implies that B(z), z being a complex variable, has rank n
almost everywhere in the complex plane. This is tantamount to assuming that the spectral
density matrix of yt, i.e. Sy(θ) = 1

2π
B(e−jθ)B′(ejθ), j being the imaginary unit, is nonsingular

a.e. in [π π).5

In this paper we are concerned with identification of a single shock of interest, say uit.
In order to highlight the shock of interest and the corresponding response functions, it is
convenient to re-write (1) in the form

yt = bi(L)uit + B̃(L)ũt, (2)

where bi(L) = bi0 + bi1L + bi2L
2 + · · · is the i-th column of B(L), B̃(L) includes the other

columns of B(L) and ũt = (u1t · · · ui−1,t ui+1,t · · · uqt)′.
On the other hand, being stationary and purely nondeterministic by (1), yt necessarily

admits the Wold representation
yt = C(L)εt (3)

where C(L) = C0 + C1L+ C2L
2 + · · · and εt is a vector white-noise process with covariance

matrix Σε. Of course, this representation is square.
For VAR estimation, it is convenient to add the following assumption.

Assumption 2. (VAR representation) The matrix of the Wold representation C(L) has an
inverse in the non-negative powers of L, possibly of infinite order. Hence, letting its inverse
be A(L), yt has the VAR representation

A(L)yt = εt. (4)
4We omit the constant term for notational simplicity. A rational impulse-response function is the ratio of

two polynomials in L.
5A treatment of the case q < n, where the variables have a singular spectral density matrix, can be found

in Forni et al. (2020).
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We remark that we do not require invertibility of the structural representation, but only
invertibility of the Wold representation. Moreover, we do not assume that the VAR has a
finite order.

2.2 Structural shocks and VAR residuals

What is the relation between the structural shocks ut and the VAR residuals εt? What is
the relation between the structural response functions B(L) and the VAR coefficients A(L)?
To begin, we present a very general result, not requiring either invertibility or recoverability.
Then we define these important properties of the structural shocks and specialise our results
to the recoverability and the invertibility cases.

The results in the present section can be regarded as a generalisation of the representation
results in Lippi and Reichlin (1994), which refer to a square system, to the case of possibly
“short” structural models, where q ≥ n and recoverability does not hold for all structural
shocks.

2.2.1 A general result

Clearly, the VAR residuals εt are linear combinations of the current and lagged structural
shocks ut, since from Equations (1) and (4) we see that

εt = A(L)yt = A(L)B(L)ut = Q(L)ut. (5)

But what about the inverse relation, i.e. the one relating ut to εt? Unfortunately, in the
general case we cannot write ut as an exact function of the ε’s. To see this, consider the case
q > n, i.e. there are more structural shocks than VAR residuals: intuition suggests that in
this case we cannot have an exact linear mapping relating all of the shocks in ut to those in
εt. We show below that this is in fact the case. The best we can do, within a linear setting, is
to approximate ut by taking the projection of ut onto H, the space spanned by the present,
past and future of the Wold shocks εt: H = span(εj,t−k, j = 1, . . . , n, k ∈ Z). Denoting with
P the linear projection operator, we have

ut = P (ut|H) + st = D′(F )εt + st, (6)

where st is the residual of the projection, F = L−1 is the forward operator such that Fεt = εt+1

and D′(F ) is a q×n matrix of linear filters. Existence of the above infinite sum representation
is guaranteed by the fact that εt is a vector white noise.

The following result shows that there is a precise relation between (5) and (6).
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Proposition 1. (Basic representation theorem)
(i) D(F ) is one-sided in the non-negative powers of F .
(ii) Q(L) defined in (5) is linked to the projection coefficients in (6) by the relations

Q(L) = ΣεD(L); D(L) = Σ−1ε Q(L). (7)

(iii) The structural impulse-response functions are linked to the Wold impulse response functions
by the relation

B(L) = C(L)Q(L) = C(L)ΣεD(L).

In particular, for the impulse-response functions of interest the relation is

bi(L) = C(L)qi(L) = C(L)Σεdi(L). (8)

Proposition 1 establishes a mapping between the Wold impulse-response functions C(L) and
the structural impulse-response functions B(L) which holds true independently of invertibility
or recoverability of the structural shocks.

2.2.2 Recoverable shocks

An important special case is the one of uit being recoverable. In this case, we have an exact
mapping relating uit to the present and future of εt.

Definition 1. (Recoverability) Let Hy be the closed linear space spanned by present, past
and future values of yt: Hy = span(yj,t−k, j = 1, . . . , n, k ∈ Z). We say that the structural
shock uit is recoverable with respect to yt if and only if uit ∈ Hy. We say that ut is (globally)
recoverable with respect to yt if and only if all of the structural shocks are recoverable.

Proposition 2. (Structural shocks and VAR residuals) If uit is recoverable with respect to yt,

uit = d′i(F )εt = q′i(F )Σ−1ε εt, (9)

where di(F ) = di0 + di1F + di2F
2 + · · · is the i-th column of D(F ) and qi(F ) = qi0 + qi1F +

qi2F
2 + · · · is the i-th column of Q(F ). Moreover

d′i(F )Σεdi(L) = q′i(F )Σ−1ε qi(L) = 1.

Remark 1. (Global recoverability and square systems) An immediate consequence of the
above result is that, if ut is globally recoverable, then st = 0 and ut = D′(F )εt. Hence from
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(5) we see that D′(F ) is a left-inverse of Q(L). This can be true in our setting, where n ≤ q,
only if q = n (so that D′(F ) is the inverse of Q(L)). The converse is also true, i.e. if q = n,
then ut is recoverable. For, from (5) we get Σε = Q(z)Q′(z−1). Hence, if detQ(z) vanishes
for z = z∗, then detQ(z−1) must have a pole in z∗, which is impossible if |z∗| = 1, since εt is
stationary. Hence Q(L) is invertible (possibly toward the future) and uit ∈ H for any i. In
conclusion, ut is globally recoverable if and only if q = n.6

Remark 2. (Global recoverability and Blaschke matrices) Lippi and Reichlin (1994), in
the context of a square model, show that the structural IRFs and shocks are related to the
Cholesky IRFs and shocks by a Blaschke matrix, i.e. a matrix M(z) of rational functions in
z such that M(z)M ′(1/z) = I. This can be easily seen using the above results. From (3)
we see that the Cholesky representation of yt is yt = [C(L)H]ηt, where H is the Cholesky
factor of Σε, such that HH ′ = Σε, and ηt = H−1εt. We have seen in Remark 2 that,
under global recoverability, ut = D′(F )εt. Hence ut = M ′(F )ηt, where M ′(F ) = D′(F )H.
Moreover, M(z), z being a complex variable, is a Blaschke matrix. For, we have seen in
Remark 2 that, under global recoverability, D′(F )Q(L) = In. Since Q(L) = ΣεD(L) by (7),
we have M ′(F )M(L) = M(L)M ′(F ) = In. Hence ηt = M(L)ut and the structural impulse
response functions are related to the Cholesky impulse-response functions by the equation
B(L) = [C(L)H]M(L).

Remark 3. (Recoverability measure) Let us consider the spectral density function of the
projection of uit onto H, i.e. d′i(F )εt = q′i(F )Σ−1ε εt. We have

R2
r(θ) = d′i(e

jθ)Σεdi(e
−jθ) = q′i(e

jθ)Σ−1ε qi(e
−jθ),

where j denotes the imaginary unit. This quantity represents the fraction of the total variance
of uit explained by the projection, decomposed by frequency, and is equal to 1 at all frequencies
if uit is recoverable. Correspondingly, the variance of the projection, i.e.

R2
r =

∞∑
k=0

d′ikΣεdik =
∞∑
k=0

q′ikΣ
−1
ε qik

is the fraction of total variance explained by the ε’s and is equal to 1 when uit is recoverable.
Hence R2

r(θ) and R2
r can be regarded as measures of recoverability.

6See also Chahrour and Jurado (2021).

8



2.2.3 Fundamental/invertible shocks

If uit is recoverable, it may be the case that it fulfils a more demanding property, that is
fundamentalness. In the literature, fundamentalness is often regarded as a synonymous
of invertibility. Indeed, fundamentalness is somewhat weaker than invertibility, in that
invertibility requires that uit can be written as a linear combination of the present and past
history of yt, whereas fundamentalness does not. For instance, if yt = (1− L)ut, then ut is
fundamental but does not have a VAR representation since (1− L) is not invertible. In our
setting however we are assuming that yt has a VAR representation, so that fundamentalness
and invertibility coincide.

Definition 2. (Fundamentalness) Let H−t be the closed linear space spanned by present and
past values of yt: H−t = span(yj,t−k, j = 1, . . . , n, k ≥ 0). We say that the structural shock uit
is fundamental with respect to yt if and only if uit ∈ H−t . We say that ut is fundamental with
respect to yt if and only if all structural shocks are fundamental with respect to yt.

From the definition of fundamentalness we see that if uit is fundamental for yt, then uit is
recoverable, whereas the converse is not necessarily true. The following well-known result
holds.

Proposition 3. (Structural shocks and VAR residuals) If uit is fundamental for yt, then
di(F ) = di0 = di and qi(F ) = qi0 = qi, so that

uit = d′iεt = q′iΣ
−1
ε εt. (10)

Remark 4. (Global fundamentalness) An immediate consequence of Proposition 3 is that, if
ut is globally fundamental for yt, then it is a contemporaneous linear combination of the ε’s,
that is ut = D′εt. Hence using Proposition 1 we get Q(L) = ΣεD

′, so that Q(L) = Q = B0

(since A0 = In, see Equation 5). Moreover, we see from Equation (5) that D′εt = ut = D′Qut,
so that D′Q = In. Since we have global fundamentalness, B0, Q and D must be square (see
Remark 1), so that D′ is the inverse of the matrix of the impact effects B0.

Remark 5. (Fundamentalness measure) In analogy with Remark 3, we can define a measure
of fundamentalness as R2

f = d′iΣεdi. This measure corresponds to the fundamentalness
measure proposed by Forni et al. (2019).

Regarding the impulse-response functions, we see from Proposition 3 that, if uit is funda-
mental, Equation (8) reduces to

bi(L) = C(L)qi = C(L)Σεdi, (11)
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where d′iΣεdi = q′iΣ
−1
ε qi = 1.

2.3 A general representation

From the above result we can derive a general representation of yt in the fundamental shocks,
the recoverable but nonfundamental shocks and the nonrecoverable shocks.7

Proposition 4. (General Representation) Any vector process yt satisfying Assumptions 1
and 2 can be represented as

yt = Bf (L)uft +Br(L)urt +Bn(L)unt

= C(L)Qfuft + C(L)Qr(L)urt + C(L)Qn(L)unt

= C(L)ΣεD
fuft + C(L)ΣεD

r(L)urt + C(L)ΣεD
n(L)unt . (12)

where uft is the sub-vector of the fundamental structural shocks, urt of the recoverable (but
nonfundamental) shocks, and unt of the nonrecoverable ones. Σε is the covariance matrix of
the Wold innovations εt and C(L) is the matrix of the Wold representation. Qh(L)uht , for
h = f, r, n, is the projection of εt onto uht−k, with k ≥ 0; and Dh(L), for h = f, r, n, is such
that Dh(F )εt is the projection of uht onto εt+k, with k ≥ 0. Moreover, the following properties
hold:

(i) Df and Qf are such that Df ′ΣεD
f = Qf ′Σ−1ε Qf = Iqf , qf being the number of funda-

mental shocks;

(ii) Dr(L) and Qr(L) are such that Dr′(F )ΣεD
r(L) = Qr′(F )Σ−1ε Qr(L) = Iqr , qr being the

number of recoverable but nonfundamental shocks.

3 Identification, estimation, and testing

We now discuss how the structural impulse-response functions and the structural shocks can
be identified and estimated by using an external proxy in the VAR framework discussed in
the previous section.

3.1 The instrument

Let us start by introducing the instrument.
7Proposition 4 generalises representation results provided in Lippi and Reichlin (1994) and Miranda-

Agrippino and Ricco (2021).
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Assumption 3. (The Instrument) The researcher can observe the proxy z̃t, following the
relation

z̃t = β(L)z̃t−1 + µ′(L)xt−1 + αuit + wt, (13)

where wt is an error orthogonal to uj,t−k, j = 1, ..., q, for any integer k and to zt−k, xt−k,
k ≥ 0, and β(L), µ(L) are rational functions in the lag operator L (for simplicity we omit the
constant term).

This assumption is similar to the one used in Plagborg-Møller and Wolf (2022), which in
turn is essentially equivalent to the weak LP-IV condition of Stock and Watson (2018). A
remarkable difference, however, is that the vector xt appearing on the right side of (13) is not
necessarily equal to the VAR vector yt.

Stock and Watson (2018) stresses that Equation (13) is more restrictive than the standard
validity conditions for the SVAR-IV, i.e. (i) cov(z̃t, uit) 6= 0 and (ii) cov(z̃t, ukt) = 0 for
k 6= i. Let us observe, however, that (i) and (ii) are sufficient only when assuming global
invertibility, which of course is more demanding than invertibility of uit alone. If we require
only partial invertibility, we need a stronger validity condition, similar to Equation (13) above
(see Miranda-Agrippino and Ricco, forthcoming).8

The above proxy cannot be used directly in our setting unless β(L) = 0. Hence, in place of
z̃t, we shall consider the residual of the projection of z̃t onto the past history of z̃t and xt, i.e.

zt = αuit + wt. (14)

Indeed the first step of our proposed procedure is to ‘clean’ z̃t by estimating (13) and then
using the residual zt in place of z̃t.

3.2 The IRFs and the shock

In this subsection, we present our main identification results. First we consider the case of
nonrecoverable shocks. In this case the shock and the impulse response functions corresponding
to a unit-variance shock (the absolute IRFs) are not identified, but the relative response
functions are identified. Moreover, we can estimate upper and lower bounds for the absolute
IRFs. Then we turn to the case of a recoverable shock. In this case both the shock and the
absolute IRFs are identified. Finally we consider the case of a fundamental shock. In this case
the IRFs and the shock are identified by the standard External-Instrument SVAR formulas.

8As an example, consider the proxy z̃t = u1t + u2,t−1 + wt, where u2t is not fundamental. If the shock of
interest is the first one (i = 1), this proxy fulfills (i) and (ii). But in general u2,t−1 will be correlated with εt,
thus inducing a bias in the estimated response functions.
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Throughout this and the following subsections, we present results for the ‘cleaned’ proxy
zt = αuit + wt (see Equation 14). Let us observe, however, that all results hold true also for
the original proxy z̃t, provided that β(L) = 0 in Equation (13).

The identification results of the present subsection are essentially equivalent to those of
Plagborg-Møller and Wolf (2022); the difference is that our identification formula, basing on
the representation results of the previous section, relate the structural IRFs to the coefficients
of the Wold representation of yt, on the one hand, and the projection of the VAR residuals
on the current and lagged instrument, on the other hand. As for the structural shock, we
relate it to the coefficients of the projection of the instrument on the present and future of
the VAR residuals. This is useful to introduce our proposed estimation method, where, unlike
Plagborg-Møller and Wolf (2022), the instrument is kept outside the VAR.

3.2.1 Nonrecoverable shocks

Let us consider the projection of εt onto the present and past of the proxy:

εt = ψ(L)zt + et. (15)

The following result holds.

Proposition 5. (Relative IRFs) The coefficients of the projection (15) are related to qi(L)

appearing in (8) by the equation
ψ(L)σ2

z = qi(L)α. (16)

Hence the impulse-response functions fulfil the relation

bi(L)α = C(L)ψ(L)σ2
z . (17)

A consequence of Proposition 5 is that a possible strategy to estimate the impulse response
functions is to perform the OLS regression of εt onto the present and past values of zt until a
maximum lag r to get an estimate of ψ(L) = q′i(L)α/σ2

z , say ψ̂(L), and estimate bi(L)α as

b̂i(L)α = Ĉ(L)ψ̂(L)σ̂2
z = γ̂(L)σ̂2

z . (18)

Remark 6. (Consistency) The estimator (18), as well as the estimators suggested below, are
elementary functions of the estimators appearing on the right-hand side of the equation, so
that consistency is ensured by consistency of such estimators. Notice that the population VAR
is possibly of infinite order and projection (15) is necessarily of infinite order, so that, when
setting p and r, we truncate such relations. The approximation works since the coefficients
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shrink the further you go into the past; however, consistency requires that p and r go to
infinity with T at a suitable rate.

Unfortunately, in the general case α cannot be estimated consistently so that we cannot
estimate the impulse response functions corresponding to a unit-variance shock. However,
we can estimate the relative IRFs, by normalising the IRFs obtained according to (18) by
dividing by the effect on a pre-specified variable at a given lag, as suggested in Stock and
Watson (2018). For instance we can normalise the impulse-response functions by dividing by
the impact effect on the first variable:

b̂i(L)

bi1(0)
=
γ̂(L)

γ̂1(0)
, (19)

where γ̂1(L) is the first entry of γ(L). The IRFs are then the ones corresponding to a shock
having impact effect 1 on the first variable.

Remark 7. (An alternative estimator for the IRFs) An alternative strategy for the estimation
of the relative impulse response functions is to perform the opposite projection, i.e. the OLS
projection of zt onto the present and future of εt, until a maximum lead r, to get an estimate
of δ(F ) = αdi(F ) (see Equation 6) and use the equality bi(L) = C(L)Σεdi(L) (see Formula
8). This strategy however implies estimation of a single equation with (r + 1)n regressors
as against the r + 1 regressors of each one of the n equations in (15). Our simulations,
not reported here, confirm that the procedure proposed above performs better than this
alternative.

Plagborg-Møller and Wolf (2022) show that, while it is impossible to estimate the absolute
response functions, it is nonetheless possible to compute upper and lower bounds for the
parameter α; such upper and lower bounds can be derived in our setting and provide lower
and upper bounds, respectively, for the absolute response functions bi(L) = γ(L)σ2

z/α.

Proposition 6. (Upper and lower bounds) Letting α2 and α2 be the upper and the lower
bound of α2, respectively, we have

α2 ≤ σ2
z = α2

α2 ≥ α2 sup
θ∈(0 π]

R2
r(θ) = σ4

z sup
θ∈(0 π]

ψ′(ejθ)Σ−1ε ψ(e−jθ). (20)

In practice, the upper bound can be easily estimated as α̂ = σ̂z; the lower bound can
be estimated by taking the maximum of ψ̂′(ejθ)Σ̂−1ε ψ̂(e−jθ) over the Fourier frequencies
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θf = f(2π/T ),for f = 1, . . . , T , T being the number of observations:

α̂ = σ̂2 max
0<f≤T

√
ψ̂′(ejθf )Σ̂−1ε ψ̂(e−jθf ).

Having an estimate of the two bounds, the lower bound for the absolute impulse response
functions can be estimated as

bi(L) = γ̂(L)σ̂2
z/α̂ = γ̂(L)σ̂z = Ĉ(L)ψ̂(L)σ̂z. (21)

Similarly, the upper bound for the impulse response functions can be estimated as

bi(L) =
γ̂(L)σ̂2

z

α̂
=

Ĉ(L)ψ̂(L)

max0<f≤T

√
ψ̂′(ejfπ/T )Σ̂−1ε ψ̂(e−jfπ/T )

. (22)

The upper and lower bounds for α can also be used to get upper and lower bounds for
the fraction of variance accounted for by the shock of interest. We explain in detail how to
perform variance decomposition in subsection 3.3 below.

3.2.2 Recoverable but nonfundamental shocks

If the shock is recoverable, we can estimate the absolute IRFs and the shock itself. Let us
begin with the absolute IRFs. The following results holds.

Proposition 7. (Absolute IRFs) If uit is recoverable, its (absolute) impulse response functions
are given by the equation

bi(L) = γ(L)σ2
z/α =

C(L)ψ(L)√∑∞
k=0 ψ

′
kΣ
−1
ε ψk

.

From the above proposition we see that bi(L) can be estimated as

b̂i(L) = γ̂(L)σ̂2
z/α̂ =

Ĉ(L)ψ̂(L)√∑r
k=0 ψ̂

′
kΣ̂
−1
ε ψ̂k

. (23)

Coming to the shock, let us consider the projection of zt onto the space spanned by the
present and the future of the VAR residuals:

zt = δ′(F )εt + vt. (24)

The following proposition holds.

14



Proposition 8. (The structural shock) If uit is recoverable, then

uit =
δ′(F )εt√∑∞
k=0 δ

′
kΣεδk

.

From the above proposition we see that, if the shock is recoverable, it can be estimated as

ûit =
δ̂′(F )ε̂t√∑r
k=0 δ̂

′
kΣ̂εδ̂k

. (25)

Having an estimate of the shock, we can perform historical and variance decomposition as
explained in Section 3.3 below.

Remark 8. (An alternative estimator for the shock) An alternative strategy for the estimation
of the shock is to use the equality qi(F ) = ψ(F )σz/α (see (17)), which, coupled with Equation
(9), gives ũit = ψ̂(F )Σ̂−1ε σ̂z/α̂. We do not follow this alternative route since our simulations,
available on request, show that the estimator ûit performs better than ũit.

Remark 9. (Measuring instrument validity) Having an estimate of the shock, we can measure
the Instrument Relevance (IR), and test for it, by using the correlation coefficient of ûit and
zt:

ÎR = corr(ûit, zt).

3.2.3 Fundamental shocks

If we have fundamentalness, the following result holds.

Proposition 9. (IRFs and shocks under fundamentalness)
(i) Let us consider the projection equation εt = ψ′zt + et. If uit is fundamental, then

bi(L) =
C(L)ψ√
ψ′Σ̂−1ε ψ

.

(ii) Let us consider the projection equation zt = δ′εt + et. If uit is fundamental, then

uit =
δ′εt√
δ′Σεδ

.

From Proposition 9 (i) we see that, if the shock is fundamental, we can estimate (15)
without including the lags of zt, i.e. we can estimate by OLS the projection εt = ψ′zt + et to
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get an estimate of ψ. The impulse-response functions can then be estimated as

b̂i(L) =
Ĉ(L)ψ̂√
ψ̂′Σ̂−1ε ψ̂

. (26)

Notice that the above procedure is nothing else that the standard estimation procedure, which
is usually applied without testing (see below for our proposed fundamentalness test).

Turning to estimation of the shock, by Proposition 9 (ii) we can estimate (24) including
only the current εt among the regressors, in order to estimate δ; having δ̂, the unit variance
shock can be estimated as

ûit =
δ̂′ε̂t√
δ̂′Σ̂εδ̂

. (27)

3.3 Historical and variance decomposition

In this subsection we discuss historical decomposition and variance decomposition. First we
consider the case of recoverability, then we turn to nonrecoverability.

3.3.1 Recoverable shocks

We have shown that, if the shock of interest is recoverable, it can be estimated. Having an es-
timate of the shock and the corresponding impulse-response functions, historical decomposition
can be performed in the standard way.

Variance decomposition is more problematic. The standard forecast error variance de-
composition (FVD) can be computed only for globally invertible models. This is because
the forecast error depends on all structural shocks and the corresponding impulse response
functions. Having an estimate of the IRFs of uit we can of course compute the numerator of
the ratio, but we cannot estimate the denominator without estimating the whole structural
model.

Plagborg-Møller and Wolf (2022) replace this denominator with the forecast error variance
based on present and past values of yt, which can be estimated, and name this ratio FVR. At
long horizons, these denominators are equal, since the forecast error coincides with the variable
itself; but in the short run the past values of yt are less informative than the structural shocks
and have larger forecast errors. As a consequence, the FVR underestimates the variance
contribution of the structural shock of interest as given by the unfeasible FVD.9 In the Online
Appendix, Subsection B.3, we provide an example showing that the downward bias can be

9See Forni et al. (2019), Section 3.4.
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very large, so that a low FVR at short horizons is scarcely informative.10

To solve this problem, in place of the FVR we suggest to use the variance decomposition
given by the integral of the spectral density over suitable frequency bands. This decomposition
has been proposed in Forni et al. (2019) for the case of partial fundamentalness and has
become popular with Angeletos et al. (2020), where it is used to identify the so called Main
Business-Cycle Shock. It is the one referred to as VD in Plagborg-Møller and Wolf (2022).11

The relation linking the VD to the FVD is not simple. However, the VD for the whole interval
[−π π) is the total variance of the variable accounted for by the shock of interest, divided by
the total variance of the variable, so that it is equivalent to both FVD and FVR at horizon
infinity.

Let bih(L) be the h-th element of bi(L). The total variance of the component of yht
which is attributable to uit can be computed as

∫ π
0
bih(e

−jθ)bih(e
jθ)dθ/π, where j denotes the

imaginary unit. But we can also compute the variance on a specific frequency band [θ1 θ2).
If we are interested for instance in the variance of waves of business cycle periodicity, say
between 8 and 32 quarters, the corresponding angular frequencies (with quarterly data) are
θ1 = π/16 and θ2 = π/4 and the corresponding variance is

∫ π/4
π/16

bih(e
−jθ)bih(e

jθ)dθ/π. In
practice, the integral must be approximated by averaging over a suitable frequency grid within
the relevant interval (for instance, the Fourier frequencies θf = f(2π/T ), f being a natural
number such that θ1(T/2π) ≤ f ≤ θ2(T/2π)). This is the numerator of the suggested variance
decomposition. As for the denominator, we need the spectral density of yht, say 1

2π
Sh(θ),

where
Ŝh(θ) = Ĉh(e

−jθ)Σ̂εĈh(e
jθ)′,

Ch(L) being the h-th row of the matrix C(L) appearing in the Wold representation. The
total variance of yht on the frequency band [θ1 θ2) is given by

∫ θ2
θ1
Ŝh(θ)dθ/π. Hence the

contribution of uit to the variance of yht on the frequency band [θ1 θ2), say cih(θ1, θ2) can be
estimated as the ratio

ĉh(θ1, θ2) =

∫ θ2
θ1
b̂ih(e

−jθ)b̂ih(e
jθ)dθ∫ θ2

θ1
Ŝh(θ)dθ

. (28)

We can also evaluate the fraction of total variance explained by the shock of interest at each
10Were it possible to have an estimate of all structural shocks, the sum of the variance contributions of

these shocks, computed with the FVR, is smaller than 100% (in the example of the Online Appendix it is just
20%).

11We recommend to use this variance decomposition even if fundamentalness of the shock of interest
is not rejected according to the test described in the following subsection, since of course we might have
fundamentalness of this shock but not global fundamentalness; and, as stated above, the standard forecast
error variance decomposition requires global fundamentalness.
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frequency, i.e.

ĉh(θ) =
b̂ih(e

−jθ)b̂ih(e
jθ)

Ŝh(θ)
. (29)

We stress that the above formulas provide a variance decomposition for the variable
itself. In this respect, its interpretation is more direct than the one of the standard variance
decomposition, which refers to the variance of the forecast errors.

3.3.2 Nonrecoverable shocks

In the case of nonrecoverability we can only estimate γ(L)σ2
z = αbi(L) according to Equation

(18). Hence we can get an estimate of

α2ch(θ1, θ2) =
σ4
z

∫ θ2
θ1
γh(e

−jθ)γh(e
jθ)dθ∫ θ2

θ1
Sh(θ)dθ

. (30)

Since α cannot be estimated, we cannot perform the variance decomposition. However, the
upper and lower bounds for α2 provided in subsection 3.2.1 provide respectively lower and
upper bounds for ch(θ1, θ2). Precisely, we can estimate the lower bound as

ĉh(θ1, θ2) = σ̂2
z

∫ θ2
θ1
γ̂h(e

−jθ)γ̂h(e
jθ)dθ∫ θ2

θ1
Ŝh(θ)dθ

(31)

and the upper bound as

ĉh(θ1, θ2) = σ̂4
z

∫ θ2
θ1
γ̂h(e

−jθ)γ̂h(e
jθ)dθ

α̂2
∫ θ2
θ1
Ŝh(θ)dθ

, (32)

where θf = f(2π/T ), f = 1, . . . , T . Finally, the lower and upper bounds for the frequency-by-
frequency decomposition of Equation (29) can be computed as

ĉh(θ) = σ̂2
z

γ̂h(e
−jθ)γ̂h(e

jθ)

Ŝh(θ)
(33)

ĉh(θ) =
σ̂4
z γ̂h(e

−jθ)γ̂h(e
jθ)

α̂2Ŝh(θ)
, (34)

where θf = f(2π/T ), f = 1, . . . , T .

3.4 Testing for recoverability and fundamentalness

In this subsection we propose a test for recoverability and a test for fundamentalness.
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3.4.1 Recoverability test

In the proof of Proposition 8 we have seen that, if uit is recoverable, then the projection in (24),
δ′(F )εt, is equal to αuit and therefore is a white noise process. By contrast, if recoverability
does not hold, sit 6= 0 and the projection is not equal to αuit. Being a Moving Average of
present and future VAR residuals, the projection will in general be autocorrelated.

Hence, to check whether the shock is recoverable or not, following a suggestion of Plagborg-
Møller and Wolf (2022), we propose to test for zero serial correlation of the projection δ(F )εt.12

Precisely, we propose to perform the OLS regression of zt onto the present and future values
of ε̂t, until a maximum lead r, to get an estimate of δ(F ). Then apply the Ljung-Box Q-test
to the estimated projection δ̂(F )ε̂t. The null hypothesis is recoverability (serial uncorrelation)
and the alternative is nonrecoverability (serial correlation). In the following section we present
a Monte Carlo exercise in which the autocorrelation test has a reasonably good power in
rejecting recoverability when it is false.

If recoverability is rejected, we have two options: (1) estimate the relative impulse response
functions and the upper and lower bounds for variance decomposition; (2) amend the VAR
specification by adding variables (or use a FAVAR model in place of the VAR) and perform
the test with the novel VAR specification.

It is worth noticing that the above test is valid under the maintained hypothesis that
Equation (13) is fulfilled. If it is not, the lags of uit may appear in Equation (14) and the test
may reject serial uncorrelation even if the shock is recoverable. Hence the serial uncorrelation
test is indeed a joint test about recoverability and instrument validity.

If recoverability is not rejected, we can estimate the ‘absolute’ response function, the unit
variance shock and the variance decomposition as explained above.

3.4.2 Fundamentalness test

If uit is fundamental with respect to yt we see from Proposition 9 that in Equation (24)
δk = 0 for all positive k and δ(F ) reduces to δ0 = δ. Hence, we can test for the null of
fundamentalness against the alternative of nonfundamentalness by estimating (24) by OLS as
explained above and perform a standard F -test for the joint significance of the coefficients of
the leads. Notice that the test is valid even if recoverability does not hold; hence, in principle
we can test directly for fundamentalness without testing for recoverability.13

Remark 10. (Estimating the degree of fundamentalness) If fundamentalness does not hold,
but recoverability does, we can estimate consistently the degree of fundamentalness R2

f (see
12In Plagborg-Møller and Wolf (2022), the practical implementation of the test is left for future research.
13However, the recoverability test can provide a useful check in that, if recoverability is rejected, funda-

mentalness is rejected as well.
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Remark 5). From Proposition 8 we see that the fraction of the variance of uit explained by
the current VAR residuals is R2

f = δ′0Σεδ0/
∑∞

k=0 δ
′
kΣεδk. Hence we can estimate R2

f as

R̂2
f = δ̂′0Σ̂εδ̂0/

r∑
k=0

δ̂′kΣ̂εδ̂k.

Stock and Watson (2018) and Plagborg-Møller and Wolf (2022) also propose invertibility
tests based on the proxy. The latter paper, in particular, proposes to test whether the proxy
Granger causes the VAR variables.14 By using Sims’ theorem, it can be shown that their
method is asymptotically equivalent to ours. It would be interesting to compare the small
sample performances of all these tests; this however is left for further research. In the online
appendix we present a Monte Carlo exercise showing that the proposed F -test has a good
performance in small samples.

If fundamentalness is not rejected, we can estimate the ‘absolute’ response function, the
unit variance shock and the variance decomposition as explained in the previous subsections.

3.5 Inference

For inference purposes, we suggest the following bootstrap procedure. For simplicity, we
assume that the sample size T is the same for zt and yt. The generalisation to the case of
different time spans is straightforward.

First, draw with reintroduction T − (p+ r) integers i(t), t = 1, . . . , T − (p+ r), uniformly
distributed between 1 and T −(p+r), and construct the artificial sequences of shocks ε1t = ε̂i(t)

and v1t = v̂i(t), t = p+ 1, . . . , T − r, v̂t being the estimated residual of regression (24). Set the
final conditions ε1t = ε̂t for t = T − r + 1, . . . , T . Repeat the procedure H times to get the
sequences εht , t = p+ 1, . . . , T and vht , t = p+ 1, . . . , T − r, for h = 1, . . . , H.

Second, compute yht , h = 1, . . . , H, according to the VAR Equation (4). Precisely, set the
initial conditions yht = yt, t = 1, . . . , p, for all h. Then compute

yht = −
p∑

k=1

Âky
h
t−k + εht

for t = p+ 1, . . . , T . As for the proxy, set the initial and final conditions zht = zt, t = 1, . . . , p

14Fundamentalness test based on Granger causality have been previously proposed, in the context of
standard VAR identification, in Giannone and Reichlin (2006) and Forni and Gambetti (2014).
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and t = T − r + 1, . . . , T , for all h. Then compute

zht =
r∑

k=0

δ̂kε
h
t+k + vht

for t = p+ 1, . . . , T − r.
Finally, repeat the estimation procedure for any one of the artificial data sets yh1 , . . . , yhT ,

h = 1, . . . , H to get the sequences of absolute IRFs bhi (L), h = 1, . . . , H, or the corresponding
sequence of relative IRFs. Compute the confidence band as usual, by taking appropriate
percentiles of the distribution of bhik, for each lag k.

4 The proposed procedure

On the basis of the above considerations and results, we propose the following estimation and
testing procedure.

1. As a first step, regress the available proxy z̃t onto the first m lags (notice that m is not
necessarily equal to p) of z̃t itself and a set of regressors xt —which can in principle be
different from yt— to get an estimate of the residual zt, say ẑt. If the F -test does not
reject the null that the coefficients of past z̃t’s are all zero, i.e. H0 : β(L) = 0, step 1 is
unnecessary and can be skipped.

2. Estimate a VAR(p) with OLS to obtain Â(L), Ĉ(L) = Â(L)−1, ε̂t and Σ̂ε.

3. Regress with OLS the proxy ẑt on the current value and the first r leads of the Wold
residuals:

ẑt =
r∑

k=0

δ̂′kε̂t+k + v̂t = δ̂(F )ε̂t + v̂t.

Save the fitted value of the above regression, let us call it η̂t. Test for invertibility by
performing the F -test for the null H0 : δ1 = δ2 = · · · = δr = 0 against the alternative
that at least one of the coefficients is non-zero.

4. Case 1: invertibility is not rejected. In this case estimate (24) without the leads of εt to
get an estimate of δ and estimate the unit-variance shock according to (27). To estimate
the corresponding IRFs, apply the standard procedure, i.e. estimate (15) without the
lags of zt to get ψ̂ and estimate the IRFs according to (26). Estimate the variance
decomposition according to equation (28) or (29).

4′. Case 2: invertibility is rejected. In this case perform the recoverability test by testing
for the null of serial uncorrelation of the fitted value η̂t by using the Ljung-Box Q-test.
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5. Case 1: recoverability is not rejected. In this case estimate the unit-variance shock
according to (25) and the corresponding IRFs according to (23). Estimate the variance
decomposition according to equation (28) or (29). Historical decomposition can be
performed in the standard way.

5′. Case 2: recoverability is rejected. In this case, either amend the VAR specification
and repeat steps 2-4, or estimate (15) with a maximum lead r and the ‘relative’ IRFs
according to (19). Estimate lower and upper bounds according to (21) and (22) and the
corresponding variance contributions according to (31) and (32) or (33) and (34).

Let us stress that the above External-Instrument SVAR procedure is more flexible than
the Internal-Instrument method, recently re-proposed in Plagborg-Møller and Wolf (2021,
2022), and the VARX method, proposed in Paul (2020).15 This is mainly because the sample
span of the proxy can be different from the sample span of the VAR (or the VARX). Moreover,
with respect to the internal proxy SVAR method, our procedure is more flexible because
the number of lags m and the regressors xt used in step 1 of the above procedure are not
necessarily equal to the number of lags p and the regressors yt used in the VAR. In particular,
if the regression in step 1 is not significant, or the coefficient in the lags of the proxy are not
significant, the proxy can be used without treatment (m = 0). When including the proxy into
the VAR model, this would require to impose restrictions on the VAR parameters. Finally,
notice that the number of lags r used in the regression of the VAR residuals εt onto the
current and lagged proxy can be different from p – the number of lags used in the VAR.
In Simulation 5 below we show that this flexibility may translate into better small-sample
estimation performances.

5 A simulated economy with fiscal foresight

In this section, we assess the small sample performance of the proposed estimation and testing
procedure in two Monte Carlo exercises. The simulations show that the method works and
outperforms the Internal-Instrument method in estimating the relative IRFs, conditional on
the data generating process studied here. Additional Monte Carlo exercises are provided in
Section C of the Online Appendix.

15The internal proxy method consists in including the proxy into the VAR model, ordered first, and
identifying the shock as the first one in a Cholesky scheme; the VARX method consists in estimating a VARX
with the proxy used as the exogenous variable.
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5.1 Simulation 1: A recoverable shock

In this simulation exercise we use the fiscal foresight model of Leeper et al. (2013) (LWY
henceforth). The model is a simple Real Business Cycle model with log preferences, inelastic
labor supply and two shocks: ua,t, a technology shock, and uτ,t, a tax shock. A nonstandard
feature of the model is the fact that the tax shocks are announced to the agents before being
implemented, thus inducing fiscal foresight. The equilibrium capital accumulation is

kt = αkt−1 + at − κ
∞∑
i=0

θiEtτt+i+1 (35)

where 0 < α < 1, 0 < θ < 1, κ = (1 − θ)τ/(1− τ), τ being the steady state tax rate,
0 ≤ τ < 1, and at, kt and τt are the log deviations from the steady state of technology, capital
and the tax rate, respectively. Technology and taxes are given by

at = ua,t

τt = uτ,t−2,

where uτ,t and ua,t are i.i.d. shocks. Solving for kt we obtain the following equilibrium MA
representation for capital and taxes:

(
τt

kt

)
=

 L2 0

−κ(L+ θ)
1− αL

1
1− αL

(uτ,t
ua,t

)
= B(L)ut. (36)

The determinant of the above matrix vanishes for L = 0; hence the shocks are not fundamental.
However, they are recoverable, since the system is square (see Remark 1). In particular, the
tax shock is equal to taxes two periods ahead: uτ,t = τt+2.

We generate 1000 different dataset with 240 time observations from model (36) using the
parameterisation in Leeper et al. (2013): α = 0.36, θ = 0.2673 and τ = 0.25 and ut ∼ N(0, I).
The proxy is generated according to the equation

z̃t = uτ,t + 0.5zt−1 + 0.4kt−1 − 0.6τt−1 + vt,

where vt ∼ iidN (0, 1); here the parameters are arbitrarily chosen. For each dataset, we
test for invertibility and recoverability, and estimate the tax shock along with its response
functions as explained in the previous section, by setting p = m = 2, r = 0 and p = m = 2,
r = 4. Invertibility is correctly rejected in all cases. Recoverability is (wrongly) rejected at
the 5% level in 10% of the cases, showing that the test is somewhat oversized in small samples
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with this DGP. Simulation 4 and 5 in the Online Appendix provide additional information
about the empirical size and power of the invertibility and recoverability tests.

Figure 1: Simulation 1: LWY fiscal foresight model (recoverable shock). Left panels: IRF estimation
with r = 0 (standard method). Middle panels: IRF estimation with r = 4. Right panels: estimation
of the variance contribution according to Equation (29), expressed in percentage terms. Upper and
middle panels: red dashed line, true response functions and variance decomposition; black solid line,
mean of the 1000 estimated response function and variance decompositions; grey area, 16th to 84th
percentiles. Lower panels: frequency distribution of the correlation coefficients between the estimated
shock and the true shock.

Estimation results are shown in Figure 1. The first column shows the estimates obtained
with the standard method (r = 0). The upper and middle panels show the estimated response
functions: the black solid line is the mean across the 1000 experiments; the grey area shows
the estimates between the 16th and the 84th percentiles; the red dashed lines are the true IRFs.
The bottom panel shows the frequency distribution of the correlation coefficients between
the estimated shock and the true shock. As expected, the estimates are dramatically wrong,
since r = 0 requires invertibility, which does not hold in this case. The second column shows
the estimates obtained with r = 4. Here the estimates are very good, both because black and
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red lines are almost perfectly overlapping, and because the grey area is not large, particularly
for taxes. The correlations coefficients between the estimated shock and the true shock are
very close to 1. The third column shows the variance decomposition obtained according to
Equation (29), expressed in percentage terms. The estimates are fairly good, albeit somewhat
less precise than those of the IRFs.

5.2 Simulation 2: A comparison with the Internal-Instrument SVAR

In this second Monte Carlo exercise we compare the small-sample performance of our proposed
procedure in estimating the relative IRFs with the one of the Internal-Instrument SVAR
approach, using the LWY model of Simulation 1. In particular, we want to see whether the
flexibility of the Generalised External-Instrument SVAR translates into smaller estimation
errors. The instrument is generated as in the previous exercise. We focus on the relative IRFs
of the tax shocks. Since bi1(0) = 0, the normalisation in Equation (19) cannot be used. Hence
we normalise the IRFs by dividing by the effect on the first variable (taxes) at lag 2, i.e. we
estimate

µ(L) =
γ(L)

γ1,2
=

 L2

−κ(L+ θ)
1− αL

 .

For our procedure, the instrument is preliminarily ‘cleaned’ by setting xt = yt and the number
of lags m according to the BIC. For the Internal-Instrument method, we estimate a VAR for
the vector (z̃t y′t)

′; the IRFs are identified as the ones corresponding to the first shock of a
Cholesky scheme. As in the previous exercise, we generate 1000 different dataset with 240
time observations. The estimation error of the two competing methods is measured as the
sum of the squared errors divided by the sum of the squared coefficients of the true IRFs:

100×
∑n

h=1

∑K
k=0(µ̂hk − µhk)2∑n

h=1

∑K
k=0 µ

2
hk

. (37)

We set K = 10 and n = 2. This ratio is equal to 100 for the flat estimate µ̂(L) = 0.
Results are shown in Table 1. The first column report results for the Internal-Instrument

method. The second column reports results obtained with our procedure, with r selected
according to the BIC, applied to Equation (17). Columns 3-7 report results obtained by
setting arbitrarily r = 3, 4, 5, 6, 7. Boldface numbers are the best estimates of each column.

Let us focus first on columns 3-7. Clearly, r = 3 is the best choice for our DGP. Column 2
shows that the BIC criterion is successful in detecting the correct value of r, since the errors
are very close to those of the best column (indeed, using just one decimal figure, we cannot
see any difference).
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External IV
VAR order Internal IV r = BIC r = 3 r = 4 r = 5 r = 6 r = 7

p = 1 410.8 4.3 4.3 5.0 6.4 7.9 9.4
p = 2 34.8 5.2 5.2 5.9 6.4 7.9 9.4
p = 3 7.6 6.0 6.0 6.8 7.3 8.0 9.5
p = 4 9.5 7.1 7.1 7.8 8.4 9.1 9.6
p = 5 11.2 8.0 8.0 8.8 9.3 10.0 10.6
p = 6 12.9 8.9 8.9 9.6 10.2 10.9 11.5
p = BIC 7.6 4.3

Table 1: Results of Simulation 2. Estimation errors for the relative IRFs, measured acording to (37),
for the internal instrument SVAR (first column) and our proposed procedure, with r determined by
the BIC (second column) and r = 3, 4, 5, 6, 7 (columns 3-7). Boldface numbers are the best results
obtained for each column.

The Generalised External-Instrument SVAR performs better than the Internal-Instrument
SVAR for all values of p (small values of p seem particularly effective with our method). When
using the BIC for the VAR order p (last row), our method performs better than the internal
proxy SVAR and the relative improvement is large (about 40%).

Our interpretation is the following. We have three dynamic relations: the one used to clean
the proxy z̃t, the VAR for yt and the relation linking the VAR residuals and the cleaned proxy
zt. Such relations may have different optimal orders. With the External-Instrument method we
can set different values for such orders (m, r and p): a flexibility that the Internal-Instrument
method does not have.

A similar Monte Carlo exercise with a different DGP, but similar results, is provided in
Section C of the Online Appendix (see Simulation 6). A more extensive comparison between
our proposed procedure and existing alternatives would be interesting but is beyond the aim
of the present paper.

6 The effects of monetary policy shocks

In this section, we provide an empirical application of our method and study the propagation of
monetary policy shocks. We first show that the monetary policy shocks identified with standard
high-frequency surprises at the short end of the yield curve are likely to be nonfundamental
but recoverable, in a few routinely used VAR specifications. We then show that the standard
Internal-Instrument SVAR procedure delivers price and output puzzles. Conversely, when
using our suggested procedure for noninvertible shocks, we get results in line with the textbook
effects of monetary policy.
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6.1 Data, VAR specification, instruments

Our baseline VAR specification includes three variables at monthly frequency: the 1-year
government bond rate (1YB), industrial production (IP) in growth rates and CPI inflation
(Specification I). We also present results for two additional specifications, one including
Gilchrist and Zakrajšek (2012)’s excess bond premium (EBP) (Specification II); the other
including EBP along with the mortgage spread (MS) and the commercial paper spread (CPS)
(Specification III). We use 1YB as the policy indicator variable.16

Our benchmark sample spans the period 1983:1-2008:12. In two robustness exercises, we
consider alternative initial dates, i.e. 1979:7, 1987:8, and 1990:1, as well as two alternative
ending dates, i.e. 2012:6 and 2019:6.17 The trending variables, CPI and IP, are taken in
differences since these variables are unlikely to be cointegrated. In a robustness exercise, we
consider a VAR specification with all the trending variables in levels.

The instrument for monetary policy shocks consists of the Gürkaynak et al. (2005)’s
intra-daily monetary policy surprises triggered by Federal Open Market Committee (FOMC)
decisions in the three month ahead monthly Fed Funds futures (FF4), as proposed in Gertler
and Karadi (2015) (GK from now on). The use of this instrument provides scope for testing
our approach to noninvertibility since, as discussed in Gertler and Karadi (2015) and Ramey
(2016), surprises in futures with a three month maturity are likely to capture both conventional
monetary policy shocks, and shocks to forward guidance about the path rate at short horizon.
We ‘clean’ the instrument by regressing it onto its own lags and the lags of the three variables
of Specification I, using 6 lags.18 The instrument turns out to be relevant, with a measure of
relevance ÎR between 0.4 and 0.6 depending on the specification adopted.

6.2 Fundamentalness and recoverability

We start our analysis by applying our fundamentalness test (Table 2a) to verify whether our
specifications turns out to be fundamental or not when using our instrument GK. The main
takeaway is that the results obtained with the standard proxy-SVAR approach in the monetary

16We use monthly data taken from the FRED-MD data set of McCracken and Ng (2015). Specifically, we
use industrial production (FRED mnemonic INDPRO, IP from now on), taken in log differences, the CPI
index (FRED mnemonic CPIAUCSL), taken in log differences, and the 1-year government bond rate (FRED
mnemonic GS1, 1YB from now on). In addition, we use the excess bond premium (EBP), the mortgage spread
(MS) and the commercial paper spread (CPS) taken from the replication files of Gertler and Karadi (2015).

17The samples starting in 1983:1 and 1987:8 are chosen in line with Sims and Zha (2006). Moreover, 1979:7
is the beginning of Volcker’s mandate; 1987:8 is the beginning of Greenspan’s mandate; 2008:12 is the first
month in which the 1-year bond rate falls below 1%, so that cutting our sample to 2008:12 excludes the zero
lower bound period.

18The regression is significant at the 5% level and the residual is serially uncorrelated according to the
Ljung-Box Q-test.
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Number of leads r
r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

Specification I
p = 6 0.008 0.028 0.002 0.003 0.001 0.001
p = 9 0.016 0.051 0.003 0.003 0.002 0.001
p = 12 0.011 0.045 0.003 0.002 0.001 0.000
Specification II
p = 6 0.080 0.195 0.027 0.001 0.000 0.000
p = 9 0.180 0.351 0.034 0.002 0.000 0.000
p = 12 0.221 0.457 0.059 0.003 0.000 0.000
Specification III
p = 6 0.060 0.184 0.089 0.003 0.001 0.002
p = 9 0.184 0.362 0.220 0.020 0.002 0.003
p = 12 0.215 0.353 0.250 0.060 0.031 0.027

(a) Fundamentalness test

Number of leads r
r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

Specification I
p = 6 0.619 0.662 0.251 0.469 0.037 0.060
p = 9 0.350 0.571 0.114 0.435 0.050 0.042
p = 12 0.880 0.944 0.324 0.820 0.466 0.285
Specification II
p = 6 0.441 0.473 0.308 0.777 0.394 0.357
p = 9 0.119 0.186 0.104 0.517 0.222 0.193
p = 12 0.472 0.558 0.269 0.913 0.701 0.575
Specification III
p = 6 0.034 0.315 0.446 0.608 0.738 0.546
p = 9 0.005 0.064 0.148 0.046 0.391 0.103
p = 12 0.032 0.037 0.065 0.057 0.343 0.022

(b) Recoverability test

Table 2: P -values for the invertibility (a) and the recoverability tests (b), for different values of p
and r. Specification I includes the 1-year bond rate (1YB, industrial production growth (IP) and
CPI inflation (CPI). Specification II includes 1YB, IP, CPI and the excess bond premium (EBP).
Specification III includes 1YB, IP, CPI, EBP, the mortgage spread and the commercial paper spread.
The proxy is the one of Gertler and Karadi (2015).

policy literature should be taken with caution, since the VAR specification might be affected
by nonfundamentalness. In fact, results in Table 2a show that, for r ≥ 6, fundamentalness is
rejected at the 1% level with Specifications I and II and for r ≥ 7 is rejected either at the
5% level or the 10% level with Specification III. The degree of fundamentalness R̂2

f is below
0.5 for all specification for r ≥ 6. We conclude that the inclusion of financial variables in the
VAR may not be sufficient to solve fundamentalness problems. These results are in line with
the findings of Plagborg-Møller and Wolf (2022) and the arguments in Ramey (2016), who
cautions against the standard SVAR-IV approach.

Yet, the good news is that the shock is recoverable. The p-values of the Ljung-Box Q-test
for serial correlation of the estimated monetary policy shock, for our three specifications,
with different values of p and r (maximum lag 24) are reported in Table 2b. The result is
that recoverability cannot be rejected at the 5% level for most parameter configurations. We
conclude that, at least for our time span, the monetary policy shock is recoverable, even with
the three-variable Specification I, and that financial variables are not needed to find the policy
shock.

6.3 The three-variable VAR

In this subsection we compare the impulse response functions obtained with the standard
method with those obtained with our proposed method. We choose Specification I with the
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GK instrument as our benchmark. We set the number of lags in the VAR equal to 12 (p = 12)
and the number of leads of the VAR residuals included in the regression of the proxy equal to
6 (r = 6). In a robustness exercise, we try different values of p and r.19

The basic insight delivered by our exercise is that by incorrectly assuming invertibility
without testing one can get dramatically misleading results. On the contrary, when the
proposed procedure is applied, the estimation delivers results in line with textbook effects
of monetary policy, even with a small VAR, and not including the EBP or other financial
variables.

Figure 2: VAR results: Specification I, p = 12, GK instrument. Top panels: estimated response
functions with r = 0 (standard method). Bottom panels: estimated response functions with our
proposed method r = 6. Black line: point estimate. Grey area: 68% confidence bands.

The results from the baseline model are reported in Figure 2. All responses are normalised
to have an impact effect of 100 basis points on the 1-year bond rate. The top panels show
the estimated impulse response functions obtained with r = 0, i.e. the standard proxy SVAR
procedure. The response of 1YB is hump-shaped and very persistent (the zero line is not
reached after 3 years). Both prices and industrial production significantly increase after a
tightening shock, so that we have both a large price puzzle and a large real activity puzzle.

The bottom panels show the result obtained with our proposed procedure with r = 6.
Results are completely different and much more plausible. The reaction of the policy variable
is much less persistent: after the significant impact effect it reaches the zero line in about 4
months and further on it is no longer significant. Both inflation and output puzzles disappear:

19For simplicity, here we do not make any attempt at cleaning the instrument from the information effects
recently discussed in the literature (see, for example, Jarociński and Karadi, 2020 and Miranda-Agrippino and
Ricco, 2021). This is left for future research.
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prices and industrial production reduce significantly after an impact effect which is very close
to zero. The effects on real activity are no longer significant after about one year, showing that
the effects of monetary policy on real activity are transitory, in line with the consensus. In
Section D of the Online Appendix, we report several robustness checks. The overall conclusion
is that the above results are reasonably robust.

6.4 Medium-size VAR specifications

Are results sensitive to the VAR information set? To answer this question, in this subsection we
examine results for Specification II, that includes EBP, and Specification III, that incorporates
the mortgage spread and the commercial paper spread, as well as EBP. We set p = 12, r = 0

and r = 6, as in the previous subsection. The main conclusion of this exercise is that results
obtained with our proposed method are reasonably robust, whereas results obtained with the
standard method are not.

Figure 3: IRFs for Specification III (1YB, CPI inflation, IP growth, EBP, MS CPS). The instrument
is GK. Red line: point estimates; blue line: point estimates for Specification II; black line: point
estimates for Specification I. Top panels: estimated response functions with p = 12, r = 0 (standard
method). Bottom panels: estimated response functions with our proposed method, p = 12, r = 6.
Pink shaded area: 68% confidence bands for Specification III.

In the top panels, Figure 3 reports the case r = 0 (standard method). The lines are
respectively the point estimates for Specification I (black), Specification II (blue), and
Specification III (red). We also report the confidence bands of Specification III (pink shaded
areas). Results appear to be very sensitive to the set of variables included in the VAR. With
Specification II, the effects on prices and real activity are essentially zero. With Specification
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III, the sign of the IRFs of prices and industrial production are negative, and the puzzles of
Specification I disappear. Still, the effects are quantitatively small, especially for prices, and
not significant.

The IRFs obtained with the Generalised External-Instrument approach (r = 6) of the first
three variables are similar to those obtained with Specifications I and II (bottom panels in
Figure 3). The reaction of prices is large and significant. The reaction of IP is barely significant,
since the confidence bands are very large, however the point estimates consistently show a
sizeable reduction of about 3-5 percentage points of production after one year, depending on
the VAR specification.

6.5 Variance decomposition

Do monetary policy shocks account for a sizeable share of the variance of prices and output?
To answer this question, it is useful to evaluate the variance decomposition VD of CPI inflation
and industrial production growth obtained with our VAR specifications (p = 12, r = 6). We
report results for waves of periodicity 2-18 months (short run), 18-96 month (business cycle)
and 2+ months (overall variance). The main finding is that the effects of monetary policy on
prices are much larger than previously reported, suggesting that it can be used successfully in
controlling inflation.

Table 3 reports the point estimates and the 68% confidence bands (in brackets) for the
percentage of variance explained by the monetary policy shock. The estimates for the cyclical
variance (18-96 months) are not very reliable because of the large confidence bands, so that
we focus mainly on the short-run and overall variances. The point estimates of the short-run
volatility contributions range from 12.3% to 19.2% for inflation and from 16.1% to 27.7% for
industrial production growth. As for the overall variance, the estimates range from 12.5% to
20.8% for inflation and from 13.0% to 28.3% for industrial production.

With Specification III, which provides the smallest estimates, the monetary policy shocks
explains 12.5% of the overall variance of inflation and 13% of the overall variance of production,
with the 68% confidence bands ranging between a minimum of around 10% and a maximum
of around 20% for both variables. We conclude that, contrary to previous findings, the effects
of discretionary monetary policy on inflation are far from negligible. These results are at odds
with the ones in Plagborg-Møller and Wolf (2022), where, according to FVR estimates, the
contribution of policy shocks to inflation fluctuations is negligible at all horizons between 0
and 24 months.

To understand the sources of the difference, we compute the point estimates of the FVR of
inflation, reported in Table 4. In the lower part of the table, we also report results for CPI in
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Waves of periodicity
2− 18 months 18− 96 months 2+ months

Specification I

CPI inflation 19.2 27.6 20.8
(13.5—29.1) (12.8—64.2) (16.2—35.1)

IP growth 27.7 33.8 28.3
(19.1—36.4) (13.1—55.4) (20.0—37.6)

Specification II

CPI inflation 12.3 12.9 13.2
(10.4—23.1) (9.7—45.1) (13.4—26.8)

IP growth 20.3 29.5 22.5
(15.8—28.2) (11.4—51.5) (16.7—31.3)

Specification III

CPI inflation 12.5 10.3 12.5
(10.2—19.5) (6.9—34.2) (11.2—21.5)

IP growth 16.1 5.2 13.0
(12.2—22.2) (4.2—22.0) (11.2—20.7)

Table 3: Percentage of variance accounted for by the monetary policy shock, for waves of periodicity
2-18 months (short run), 18-96 months (business cycle), 2+ months (overall variance). 68% confidence
bands in brackets.

FVR Horizon VD
impact 3 months 6 months 12 months 24 months 2+ months

CPI inflation

Specification I 0.5 7.2 15.3 18.4 20.7 20.8
Specification II 0.2 4.7 9.1 13.3 13.4 13.2
Specification III 0.3 5.6 7.4 12.5 12.4 12.5

CPI index in levels

Specification I 0.5 4.2 9.9 20.0 21.5
Specification II 0.2 2.6 5.3 13.7 22.5
Specification III 0.3 4.4 7.1 13.8 18.5

Table 4: Percentage of variance of CPI inflation and prices accounted for by the monetary policy
shock, according to the FVR measure of Plagborg-Møller and Wolf (2022), on impact and at 3,6, 12,
24 months horizons.

levels,20 as is common practice in the literature. At short horizons, the variance contributions
are small. As argued in Subsection 3.3, these numbers should be taken with caution because
of the downward bias. By contrast, the estimate of the FVR at the 24-month horizon is
reliable, since we see in the upper part of the table that the numbers are almost identical

20This is obtained simply by taking the cumulated sums of the IRFs.
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VD: waves of periodicity FVR: horizon
Time span 2− 18 months 18− 96 months 2+ months 24 months

1983:1–2008:12 10.4 22.0 16.1 15.5
1990:1–2012:6 6.3 15.5 8.0 8.1

1987:1–2008:12 7.3 15.4 11.3 10.6
1983:1–2012:6 10.0 24.6 12.7 12.8
1979:7–2012:6 17.2 19.3 17.4 17.5
1979:7–2019:6* 15.7 18.2 15.3 15.1

Table 5: Variance decomposition of inflation for different time spans, Specification IV: FFR, CPI
inflation, IP growth, EBP. VD: percentage of inflation variance accounted for by the monetary
policy shock, for waves of periodicity 2-18 months (short run), 18-96 months (business cycle), 2+
months (overall variance). FVR: percentage of forecast error variance of inflation accounted for by
the monetary policy shock at the 2-year horizon. For the sample 1979:7–2019:6 in place of the EBP
series we use three financial variables: the 10-year treasury bond rate, the BAA corporate bond yield
and the S&P500 stock price index.

to those of the overall VD, reported in the last column for convenience. This means that at
horizon 24 all of the IRFs of inflations are already close to zero and the bias has disappeared.
We conclude that the use of FVR in place of VD cannot explain the inconsistency of estimates.
Coming to the bottom part of the table and focusing on the 2-year horizon, we see that the
variance contribution of monetary policy to the forecast error of prices is even larger when
considering the price index taken in levels.

Another potential source of differences in the empirical estimates is the policy indicator.
Following Plagborg-Møller and Wolf (2022), we consider a model (Specification IV) incorpor-
ating the same variables of Specification II but with the federal funds rate (FFR) in place of
1YB. In addition, we set p = 6, as in Plagborg-Møller and Wolf (2022) (instead of p = 12). We
retain m = 6 and set xt = yt for the preliminary treatment of the instrument. We compute
the point estimates of VD and FVR at horizon 24 for different time spans (Table 5). The
fist row reports the estimates for the full sample, which are somewhat larger than the ones
obtained for Specification II with p = 12. We conclude that the number of lags used in VAR
estimation and the use of FFR in place of 1YB cannot explain the difference.

In the second row, we report the estimates for the time span 1990:1–2012:6, the same used
in Plagborg-Møller and Wolf (2022). The explained variances for this sample are sizeably
smaller than the ones of our time span: the overall VD is 8.0% as against 16.1%. This points
to the fact that the different time spans explain part of the discrepancy. The remaining
difference can only be due to the estimation methods.

The span of the GK instrument, 1990:1–2012:6, by excluding the 80’s and including the
first years of the zero-lower-bound period, exhibits little variation of both inflation and interest
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rates, which could be detrimental to the reliability of the estimates. To verify how different
spans affect the estimates, we report in the bottom part of the table the results for four
additional time spans: 1987:1–2008:12, 1983:1–2012:6, 1979:7–2012:6 (the same of Gertler
and Karadi, 2015) and 1979:7–2019:6.21 Notice that, for these time spans (as well as our
benchmark 1983:1–2008:12) the Internal-Instrument method cannot be used, at least with the
GK instrument. This is a nice illustration of the advantages of our proposed method. Despite
results vary considerably across different samples, the overall picture emerging from Table 5
confirms our main finding: discretionary monetary policy has non-negligible effects on prices.

7 Concluding remarks

In this paper we propose a new estimation procedure for structural VARs with an external
instrument. The procedure includes a test for invertibility and a test for recoverability, a
method to estimate the relative impulse response functions when the shock is not recoverable
and a method to estimate the absolute response functions and the shock itself when the
shock is recoverable but not invertible. The procedure reduces to the standard method when
the shock is invertible. Results reported in this paper indicate that all procedures work
remarkably well under simulation, when the sample size is comparable with those typical of
macroeconomic empirical analyses.

An application to monetary policy shocks, using the instrument of Gertler and Karadi,
2015, indicates that the policy shocks are not invertible in a few popular monetary policy VAR
specifications. While the standard method produces puzzling results, our procedure delivers
results in line with textbook effects. Finally, we find that the policy shock is recoverable, so
that we can estimate its variance contributions. Variance decomposition shows that monetary
policy has sizeable effects on both real activity and inflation, suggesting that monetary policy
can be effective in controlling prices.
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